**Booklet Series** 

TEACHERS RECRUITMENT BOARD, CHENNAI - 6 WRITTEN COMPETITIVE EXAMINATION FOR DIRECT RECRUITMENT OF LECTURERS IN GOVERNMENT POLYTECHNIC COLLEGES - 2012

## ELECTRONICS AND COMMUNICATION ENGINEERING

| Tim | e Allo | wcd: | 3 | Hours |  |
|-----|--------|------|---|-------|--|
|-----|--------|------|---|-------|--|

[ Total Marks : 190

Each question carries four options namely A, B, C and D. Choose one correct option and mark in appropriate place in the OMR answer sheet.

|       |      | 300           | SI.                | SCIION - A   |                |                    |    |
|-------|------|---------------|--------------------|--------------|----------------|--------------------|----|
|       |      | 京湖 人名         | (1                 | mark each    | )              |                    |    |
| 1.    | The  |               | signal-to-quantiz  | ation noise  | ratio for a un | form PCM by an ext | ra |
|       | A)   | 3 dB          |                    | B)           | 6 dB           |                    |    |
|       | C)   | 8 dB          |                    | D)           | 12 dB.         |                    |    |
| 2. /  | In I | DPCM, the inp | out to the quantiz | er is quanti | zed by a       |                    |    |
|       | A)   | uniform sca   | lar quantizer      | 77           |                |                    |    |
|       | B) - | non-uniform   | n scalar quantize  | th           | i escont.      |                    |    |
|       | C)   | uniform or    | non-uniform scal   | ar quantize  | en burga       |                    |    |
| ng en | D)   | none of thes  | se.                |              |                |                    |    |

- In delta modulation, the quantizer is a
  - A) 2 bit quantizer

B) 4-bit quantizer

-bit quantizer

D none of these.

F-023

[ Turn over

| 4. | The  | bit rate of a digital comm     | unication      | stem is 34 Mb      | ps. The mod  |
|----|------|--------------------------------|----------------|--------------------|--------------|
|    |      | me is QPSK. The baud rate      | 174            |                    | Part and a s |
|    | A)   | 68 Mbps                        | В)             | 34 Mbps            |              |
|    | C)   | 17 Mbps                        | D)             | 8-5 Mbps.          |              |
| 5. | Whic | ch of the following requires a | a synchronizi  | ng signal ?        |              |
|    | A)   | PAM                            | В)             | PDM                |              |
|    | C)   | Single channel PPM             | D).            | All of these.      |              |
| 6. | Mod  | ulation scheme used in GSM     | M is           |                    |              |
|    | A)   | DPSK .                         | В)             | QPSK               |              |
|    | C) - | GMSK                           | D)             | BFSK.              |              |
| 7. | Whi  | ch technique is used for allo  | cating capac   | ity on a satellite | channel usin |
|    | assi | gnment FDM?                    |                |                    |              |
|    | A)   | AM                             | B)             | FDMA               |              |
|    | C)   | FM                             | D)             | FSK.               |              |
| 8. | The  | electric field lines and equip | otential lines |                    |              |
|    | A)   | are parallel to each other     |                |                    |              |
|    | B)   | are one and the same           |                |                    |              |
|    | C)   | cut each other orthogonally    | у              |                    |              |
|    | D)   | can be inclined to each oth    | ner at any ang | gle.               |              |
| 9. | The  | value of ∮dI along a circle o  | of radius 2 un | it is              |              |
|    | A)   | zero                           | В)             | 2 π                |              |
| 4  | C)   | 4 π                            | D)             | 8 π.               |              |
| 一角 |      |                                |                |                    |              |

[ Turn over

|     |                                              | The second second             |                                         |
|-----|----------------------------------------------|-------------------------------|-----------------------------------------|
| 10. | Two electric dipoles aligned para            | allel to each o               | other and having the same axis exert    |
|     | a force F on each other, when at             | a distance                    | d apart. If the dipoles are at distance |
|     | 2d apart, then the mutual force              | between the                   | m would be                              |
|     | A) F/2                                       | В)                            | F/4                                     |
|     | C) F/8                                       | D)                            | F/16.                                   |
| 11. | A system has the transfer functi             | on $\frac{(1-s)}{(1+s)}$ . It | is known as                             |
|     | A) low-pass system                           | B)                            | high-pass system                        |
|     | C) all pass system                           | D)                            | none of these.                          |
| 12. | The open loop DC gain of a u                 | nity negative                 | e feedback system with closed-loop      |
|     | transfer function $\frac{s+4}{s^2+7s+13}$ is | 1 box                         |                                         |
|     | A) 4/13                                      | В)                            | 4/9                                     |
|     | C) 4                                         | D)                            | 13.                                     |
| 13. | For a feedback control system o              | of type 2, the                | steady state error for a ramp input     |
|     | is                                           |                               |                                         |
|     | A) infinite                                  | В)                            | constant                                |
|     | C) zero                                      | D)                            | indeterminate.                          |
| 14. | For making an unstable system                | stable                        |                                         |
|     | A) gain of the system should b               | e increased                   |                                         |
|     | B) gain of the system should b               | e decreased                   |                                         |
|     | C) the number of zeros to the l              | loop transfer                 | function should be increased            |
|     | D) the number of poles to the l              | loop transfer                 | function should be increased.           |

D

| 15. | If th | e gain of the open-loop system   | is doubled | I, the gain margin                  |
|-----|-------|----------------------------------|------------|-------------------------------------|
|     |       | is not affected                  | B)         | gets doubled                        |
|     | C)    | becomes half                     | D)         | becomes one fourth.                 |
| 16. | Non   | e of the poles of a linear contr | ol system  | lie in the right half of S-plane. F |
|     |       | inded input, the output of this  |            |                                     |
|     | A)    | is always bounded                | B)         | could be unbounded                  |
|     | C)    | always tends to zero             | D)         | none of these.                      |
| 17. | For   | a gain constant K, the phase-    | lead compo | ensator                             |
| E P | A)    | reduces the slope of the ma      | gnitude cı | arve in the entire range of frequ   |
|     |       | domain                           |            |                                     |
|     | B)    | decreases the gain cross-ove     | r frequenc | y                                   |
|     | C)    | reduces the phase margin         |            |                                     |
|     | D)    | reduces the resonance peak       | $M_p$ .    |                                     |
| 18. | WI    | nich of the following is an exan | aple of an | open loop system ?                  |
|     | A)    | Household refrigerator           |            | the state of the state of the       |
|     | B)    | Respiratory system of an an      | imal       |                                     |
|     | C)    | Stabilization of air pressure    | entering i | into a mask                         |
| +   | D)    | execution of a program by a      | compute    | r                                   |
| 19. | Th    | ne phase lead compensation is    | used to    |                                     |
|     | A)    | increase the rise time and       | decrease t | he overshoot                        |
|     | B)    |                                  |            |                                     |
|     |       |                                  |            |                                     |
|     | C)    |                                  |            |                                     |
|     | D     | decrease rise time and inc       | rease over | shoot.                              |

20. The open loop transfer function of a unity feedback control system is given by  $G(s) = \frac{k}{s(s+1)}$ 

If the gain is increased to infinity, then the damping ratio will tend to become

A)  $\frac{1}{\sqrt{2}}$ 

B) 1

C) 0

- D) 00
- 21. The logical expression  $Y = A + \overline{AB}$  is equivalent to
  - A) Y = AB

B)  $Y = A \overline{B}$ 

C)  $Y = \overline{A} + B$ 

- D) Y = A + B.
- 22. Minterms corresponding to decimal number 15 is
  - A) ABCD

B)  $\overline{A}\overline{B}\overline{C}\overline{D}$ 

C) A + B + C + D

- D)  $\overline{A} + \overline{B} + \overline{C} + \overline{D}$ .
- 23. The maximum count for which a 6 bit binary word can represent is
  - A) 36

B) 64

C) 63

- D) 65.
- 24. The hexadecimal representation of 6578 is
  - A) D 78

B) 1 AF

C) D71

- D) 32 F.
- 25. The output  $Q_n$  of a JK flip-flop is zero. It changes to 1 when a clock pulse is applied. The input  $J_n$  and  $K_n$  are respectively
  - A) 1 and X

B) 0 and X

C) X and 0

D

D) X and 1.

| 12PT-04 |                                        | 6                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|---------|----------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 06 11   |                                        |                  | eirquit to count from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|         | w many flip-flops are require to 1023? | d to build a t   | binary counter circuit to count from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|         | 17                                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| A)      | 12                                     | В)               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| C)      | 10                                     | D)               | 24.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| 27      | gital multiplexer is basically eration | y a combina      | ational logic circuit to perform the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| A)      | AND-AND                                | В)               | OR-OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| C)      | AND-OR                                 | D)               | OR-AND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| 28. He  | ow many 3 - to - 8 line deco           | lers with ena    | able output are needed to construct a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 |
|         | - to - 64 line decoder without         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| A)      | 7                                      | B)               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| . C     | ) 9                                    | D)               | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|         | (t) (t)                                | a parallel con   | onversion type 8-bit A to D converter i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s |
|         | 10                                     | В)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| . A     |                                        | D)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| C       |                                        | 718              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 30. In  | n standard TTL, totem pole st          | age reters to    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| А       | multi-emitter input stage              | В)               | ) phase-splitter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| C       | output buffer                          | D                | open collector output stage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| 31. T   | ransient current in RLC circ           | uit is oscillate | ory when                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
|         |                                        | В                | The state of the s |   |
|         | $R = 2\sqrt{L/C}$ $R > 2\sqrt{L/C}$    | D                | $R < 2\sqrt{L/C} .$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| 32. F   | for a two-port network, the h          | parameters       | $h_{11}$ and $h_{12}$ are obtained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| . A     | by shorting output term                | inals E          | B) by opening input terminals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| (       | by shorting input termin               | nals I           | D) by opening output terminals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| D       |                                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |

Maria de la composição de la composição

33.

| 33. | The  | diffusion potential across a pajur   | nction    |                                      |  |  |  |  |
|-----|------|--------------------------------------|-----------|--------------------------------------|--|--|--|--|
|     | A)   | decreases with increasing doping     | concent   | ration                               |  |  |  |  |
|     | B)   | increases with decreasing band g     |           |                                      |  |  |  |  |
|     | C)   | does not depend on doping conce      | ntration  | 8                                    |  |  |  |  |
|     | D)   | increases with increasing doping     | concent   | rations.                             |  |  |  |  |
| 34. | A Z  | ener diode works on the principle of | d.        |                                      |  |  |  |  |
|     | A)   | tunnelling of charge carriers acro   | ss the j  | unction (                            |  |  |  |  |
|     | B)   | thermionic emission                  |           | unction                              |  |  |  |  |
|     | C)   | diffusion of charge carriers acros   | s the ju  | nction                               |  |  |  |  |
|     | (D,  | hopping of charge carriers across    | the jur   | action.                              |  |  |  |  |
| 35. | In a | a differential amplifier, CMRR can   | be impro  | oved by using an increased           |  |  |  |  |
|     | A)   | emitter resistance                   | B)        | collecter resistance                 |  |  |  |  |
|     | C)   | power supply voltages                | D)        | source resistance.                   |  |  |  |  |
| 36. | As   | switched mode power supply operate   | ting at 2 | 0 kHz to 100 kHz range used as the   |  |  |  |  |
|     | ma   | ain switching element is             |           |                                      |  |  |  |  |
|     | A)   | Thyristor                            | B)        | MOSFET                               |  |  |  |  |
|     | C)   | Triac                                | D)        | U.T.                                 |  |  |  |  |
| 37. |      |                                      | active re | egion, the main stream of current in |  |  |  |  |
|     |      | e base region is                     |           |                                      |  |  |  |  |
|     | A)   | drift of holes                       | B)        | diffusion of holes                   |  |  |  |  |
|     | C)   | drift of electrons                   | D)        | diffusion of electrons.              |  |  |  |  |
| 38. |      | innel diode is a pn diode with       |           |                                      |  |  |  |  |
|     | A)   |                                      |           |                                      |  |  |  |  |
|     |      | B) very high doping in n region      |           |                                      |  |  |  |  |
|     | C)   |                                      |           | 8                                    |  |  |  |  |
|     | D)   | low doping in both p and n regi      | ons.      |                                      |  |  |  |  |
| D   |      |                                      |           | [ Turn over                          |  |  |  |  |

I NOW THE COLUMN THE PROPERTY OF THE PROPERTY

|     |      |                                                                                                         | AND THE REAL PROPERTY. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----|------|---------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 39. | Ava  | lanche breakdown results basically                                                                      | due to                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | A)   | impact ionization                                                                                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | B)   | strong electric field across the jun                                                                    | ction                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | C)   | emission of electrons                                                                                   |                        | and the second s |
|     | D)   | rise in temperature.                                                                                    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40. | Wh   | ich one of the following is not LED r                                                                   | nateria                | d?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | A)   | GaAs                                                                                                    | B)                     | GaP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | C)   | SiC                                                                                                     | D)                     | SiO <sub>2</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 41. | The  | e eigenvectors of a real symmetric                                                                      | matri                  | x corresponding to different engage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | vali | ues are                                                                                                 | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | A)   | orthogonal                                                                                              | B)                     | singular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | C)   | non-singular                                                                                            | D)                     | none of these.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 42. | The  | e matrix $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | 50   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                   |                        | i anl matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | A)   | orthogonal matrix                                                                                       | B)                     | none of these.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | C)   | transposed matrix                                                                                       | D)                     | none of these.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 40  | Δ 17 | natrix is singular if and only if it has                                                                | N. D.                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 43. | A)   | one eigenvalue                                                                                          | B)                     | two eigenvalues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | C)   | zero eigenvalue                                                                                         | D)                     | none of these.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 44. |      | = $\log \sin x$ , then $\frac{\mathrm{d}y}{\mathrm{d}x}$ is                                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | A)   | $\frac{1}{\sin x} \cos x$                                                                               | В)                     | tan x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | C)   | $\frac{1}{\sin x}$                                                                                      | D)                     | log cos x.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 45. | A sy | estem of equations is said to be inco                                                                   | nsiste                 | ent if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | A)   | they have one solution                                                                                  | B)                     | they have no solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | C)   | they have one or more solution                                                                          | D)                     | none of these.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

- 46. The value of integral  $\int_{-\pi/4}^{\pi/4} \sin^{-4} x \, dx$  is
  - A)  $-\frac{8}{3}$

B)  $\frac{8}{4}$ 

C)  $\frac{8}{3}$ 

- D) none of these.
- 47. The divergence of vector  $\vec{r} = x \vec{i} + y \vec{i} + z \vec{i}$  is
  - A)  $\bar{i} + \bar{j} + \bar{k}$

B) 3

C) 0

- D) 1
- 48. The differential equation

$$\frac{d^2y}{dx^2} + \sin x \frac{dy}{dx} + ye^x = \sinh x \text{ is}$$

- A) first order and linear
- B) first order and non-linear
- C) second order and linear
- D) second order and non-linear.
- 49. The probability that a leap year has 53 Sundays is
  - A)  $\frac{1}{7}$

B)  $\frac{2}{7}$ 

C)  $\frac{5}{7}$ 

- D)  $\frac{6}{7}$ .
- 50. For a symmetrical distribution the coefficient of skewness is
  - A) + 1

B) - 1

C) +3

- D) zero.
- 51. The sinusoidally time varying vector field

$$\overline{F} = 2 \cos (\omega t + 30^{\circ}) \ \overline{a}_x + 2 \cos (\omega t - 30^{\circ}) \ \overline{a}_y$$
 is

- A) elliptically polarized
- B) circularly polarized

C) linearly polarized

D) unpolarized.

52. A solid cylindrical conductor of radius R has a uniform current density I. The magnetic field H inside the conductor at a distance r from the axis of the conductor is

A) 
$$\frac{I}{2\pi r}$$

B)  $\frac{I}{4\pi r}$ 

C) 
$$\frac{Ir}{2\pi R^2}$$

D)  $\frac{Ir}{4\pi R^2}$ .

 Solutions of Laplace's equation, which are continuous through the second derivatives are called

A) Bessel functions

B) odd functions

C) harmonic functions

D) fundamental functions.

54. The equation of a plane wave may be written as

A) 
$$\frac{\partial^2 E_y}{\partial t^2} = \frac{1}{\mu \varepsilon} \frac{\partial^2 E_y}{\partial x^2}$$

B)  $\frac{\partial^2 E_y}{\partial x^2} = \frac{1}{\mu \varepsilon} \frac{\partial^2 E}{\partial t^2}$ 

C) 
$$\frac{\partial^2 E_y}{\partial t^2} = \frac{\mu}{\varepsilon} \frac{\partial^2 E}{\partial x^2}$$

D)  $\frac{\partial^2 E_y}{\partial t^2} = \frac{\varepsilon}{\mu} \frac{\partial^2 E}{\partial x^2}$ .

55. For an elliptically polarized wave incident on the interface of a dielectric at the Brewster angle, the reflected wave will be

A) elliptically polarized

B) linearly polarized

C) right circularly polarized

D) left circularly polarized.

56. Consider a transmission line of characteristic impedance 50 ohm. Let it be terminated at one end by j 50 ohm. The VSWR produced by it in the transmission line will be



B) 0

C) ∞

D) +

57. A quarter-wave transformer matching a 75  $\Omega$  source with a 300  $\Omega$  load should have a characteristic impedance of

Α) 50 Ω

Β) 100 Ω

C) 150 Ω

D) 200Ω.

The degenerate modes in a waveguide are characterized by
A) same cut-off frequency but different field distributions
B) same cut-off frequency and same field distribution
C) different cut-off frequencies but same field distribution
D) different cut-off frequencies and different field distributions.

59. A vertical wire of 1 m length carries a current of 1 A at 10 MHz. The total radiated power is nearly

A) 0.43 W

B) 0.88 W

C) 7.3 W

D) 73 W.

60. Radiation resistance of a Hertzian dipole of length dl is

A)  $80 \pi \left(\frac{dl}{\lambda}\right)^2$  ohms

B)  $80 \pi \left(\frac{dl}{\lambda}\right)$  ohms

C) 80  $\left(\frac{dl}{\pi}\right)$  ohms

D)  $80 \pi \left(\frac{\pi dl}{\lambda}\right)^2$  ohms.

The threshold effect in demodulators is

A) exhibited by all demodulators when the input signal to noise ratio is low

B) rapid fall on output signal to noise ratio when the input signal to noise ratio falls below a particular value

C) properly exhibited by correlation receivers

D) properly exhibited by all AM suppressed carrier coherent demodulators.

62. In a DSB-SC system with 100 % modulation, the power swing is

A) 50 %

B) 66 %

C) 75 %

D) 100 %.

63. In the generation of modulated signal, a varactor diode can be used for

A) FM generation only

B) AM generation only

C) PM generation only

D) both (B) and (C).

| 64. | If n | modulation index of an AM wave is changed       | from 0 to 1, the transmitted             |
|-----|------|-------------------------------------------------|------------------------------------------|
|     | A)   |                                                 | increases by 75 %                        |
|     | C)   |                                                 | remains unaffected.                      |
| 65. | The  | ne envelope detector is                         |                                          |
|     | A)   | synchronous detector B)                         | asynchronous detector                    |
|     | C)   | product demodulator D)                          | coherent detector.                       |
| 66. | Qu   | uadrature multiplexing is                       |                                          |
|     | A)   | same as FDM                                     |                                          |
|     | B)   | same as TDM                                     | 100                                      |
|     | C)   |                                                 | a simple                                 |
|     | D)   |                                                 |                                          |
| 67. | If t | transmitter bandwidth is doubled in FM, the     |                                          |
|     | A)   | also doubled                                    | improved four fold                       |
|     | C)   | decreased by one lourer                         | unaffected.                              |
| 68. | The  | e function of an amplitude limiter in an FM r   |                                          |
| *   | A)   |                                                 | 12 PT 1 PT |
|     | B)   | reduce the amplitude of the signal to suit      | F amplifier                              |
|     | C)   | amplify low frequency signals                   |                                          |
|     | D)   |                                                 |                                          |
| 69. | Wh   | hich of the following statements is not true of | FM?                                      |
|     | A)   | Carrier never becomes zero                      |                                          |
|     | B)   | J-coefficient occasionally are negative         | 4.                                       |
|     | C)   | Total power remains constant with respect       | to modulation index                      |
|     | D)   | None of these.                                  |                                          |

70. In the phase shift SSB method to get upper side band

13

- A) make two L SBs 180° out of phase
- B) make two L SBs in phase
- C) reduce the effect of noise pulses
- D) limit the noise bandwidth.

71. The instruction DAA in 8085

- A) converts binary to BCD
- B) converts BCD to binary
- C) adds contents of accumulator to accumulator
- D) decrements accumulator.

72. Double integration of a unit step function would lead to

A) an impulse

B) a parabola

C) a ramp

D) a doublet.

73. Laplace transform of sin h (at) is

A)  $\frac{a}{s^2 - a^2}$ 

B)  $\frac{s}{s^2-a^2}$ 

C)  $\frac{s}{s^2 + a^2}$ 

D)  $\frac{a}{s^2 + a^2}$ 

74. Fourier series of an odd periodic function contains only

A) odd harmonics

B) even harmonics

C) cosine terms

D) sine terms.

75. A system has 3-stage cascaded amplifier, each stage having a power gain of 10 dB and noise figure of 6 dB. The overall noise figure is

A) 1.38

B) 6-8

C) 4-33

D) 10.43.

- 76. Fourier transform of a function f(at) is given by
  - A)  $f(at) = \alpha F(\omega)$

B)  $f(at) = \frac{2}{a} F(\omega)$ 

C)  $f(at) = \frac{1}{a} F\left(\frac{\omega}{a}\right)$ 

- D) None of these.
- 77. The region of convergence of the Z-transform of a unit step function is
  - A) | Z | > 1

- B) | Z | < 1
- C) | Real part of Z | > 0
- D) | Real part of Z | < 0:
- 78. The transfer function of a system is given by  $H(z) = \frac{z(3z-2)}{z^2-z-\frac{1}{4}}$ . The system is
  - A) causal and stable
  - B) causal, stable and minimum phase
  - C) minimum phase
  - D) none of these.
- 79. A low-pass filter circuit is basically
  - A) differentiating circuit with low time constant
  - B) differentiating circuit with larger time constant
  - C) an integrating circuit with low time constant
  - D) an integrating circuit with larger time constant.
- 80. The discrete time system described by  $y(n) = x(n^2)$  is
  - A) causal, linear and time varying
  - B) causal, non-linear and time varying
  - C) non-causal, linear and time-invariant
  - D) non-causal, non-linear and time-variant.

[ Turn over

| 81. | 81. A junction FET can be used as a voltage variable resistor |                                       |          |                                      |  |  |
|-----|---------------------------------------------------------------|---------------------------------------|----------|--------------------------------------|--|--|
|     | A)                                                            | at pinch-off condition                | B)       | beyond pinch-off voltage             |  |  |
|     | C)                                                            | well below pinch-off condition        | D)       | for any value of V <sub>DS</sub> .   |  |  |
| 82. | Th                                                            | e MOSFET switch in its ON-state m     | ay be    | considered equivalent to             |  |  |
|     | A)                                                            | resistor                              | B)       | inductor                             |  |  |
|     | C)                                                            | capacitor                             | D)       | battery.                             |  |  |
| 83. | The                                                           | ermal runaway is not possible in FI   | ET beca  | ause as the temperature increases    |  |  |
|     | A)                                                            | mobility decreases                    | B)       | transconductance increases           |  |  |
|     | C)                                                            | drain current increases               | D)       | none of these.                       |  |  |
| 84. | Th                                                            | e RMS value of a half-way rectified   | symme    | etrical square wave current of 2A is |  |  |
| 92  | A)                                                            | √2 A                                  | B)       | 1 A                                  |  |  |
|     | Ç)                                                            | $\frac{1}{\sqrt{2}}$ A                | D)       | √3 A.                                |  |  |
| 85. | Cla                                                           | ss AB operation is often used in po   | wer am   | aplifiers in order to                |  |  |
|     | A)                                                            | get maximum efficiency                | B)       | remove even harmonics                |  |  |
|     | C)                                                            | overcome a cross-over distortion      | D)       | reduce collector dissipation.        |  |  |
| 86. | A di                                                          | fferential amplifier is invariably us | ed in t  | he input stage of all OP-AMPs. This  |  |  |
|     | is do                                                         | one basically to provide OP-AMPs w    | vith a v | ery high                             |  |  |
| Jes | A)                                                            | CMRR                                  | B)       | bandwidth                            |  |  |
|     | C)                                                            | slew rate                             | D)       | open-loop gain.                      |  |  |
| 87. | Neut                                                          | tralizing capacitors are normally us  | sed in   |                                      |  |  |
|     | A)                                                            | Audio amplifiers                      | B)       | Video amplifiers                     |  |  |
|     | C)                                                            | RF and IF amplifiers                  | D)       | Operational amplifiers.              |  |  |
|     |                                                               |                                       | - 1      |                                      |  |  |

D

THE PROOF THE SOOK HELTER (IN SHELLER HELDER)

| 88.  | Con  | sider the following:                       |          | Facilities II - II |
|------|------|--------------------------------------------|----------|--------------------------------------------------|
|      | I.   | Oscillator                                 | п.       | Emitter follower                                 |
|      | III. | Cascaded amplifier                         | IV.      | Power amplifier                                  |
|      | Whi  | ich of the following use feedback a        | mplifier | s?                                               |
|      | A)   | I and II                                   | B)       | I and III                                        |
| Ÿ    | C)   | II and IV                                  | D)       | III and IV.                                      |
| .89. | Wh   | ich one of the following circuits          | is used  | for converting a sine wave into a                |
|      |      | are wave ?                                 |          |                                                  |
|      | A)   | Astable multivibrator                      | B)       | Monostable multivibrator                         |
|      | C)   | Bistable multivibrator                     | D)       | Schmitt trigger.                                 |
| 90.  | Wh   | ich one of the following oscillator        | rs is we | ill suited for the generation of wide            |
|      |      | ige audio frequency sine waves?            |          |                                                  |
|      | A)   | RC phase shift oscillator                  | B)       | Wien-bridge oscillator                           |
|      | C)   | Colpitts oscillator                        | D)       | Hartley oscillator.                              |
| 91.  | The  | e charge when $C = 0.001 \mu F$ and $V$    | = 1 kV   | is was to desire the second                      |
|      | A)   | 0.001 C                                    | B)       | 1 μC                                             |
|      | C)   | 1 C                                        | - D)     | None of these.                                   |
| 92.  | A 3  | 30 $\Omega$ resistor is in series with the | paralle  | el combination of four 1 k $\Omega$ resistors.   |
|      | A 1  | 00 V source is connected to the            | circuit. | Which resistor has the most current              |
|      | thr  | ough it ?                                  | 1        |                                                  |
|      | A)   | 330 Ω resistor                             |          |                                                  |
|      | B)   | Parallel combination of three 1            | kΩ resis | stors                                            |
|      | C)   | Parallel combination of two 1kg            | resisto  | ors                                              |
|      |      | 1 kΩ resistor.                             |          | - Maria marks and Additional Con-                |
|      | D)   | I K12 ICSISTOI.                            |          |                                                  |

| 93.  | A network has 10 podes                                  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------|---------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | A network has 10 nodes and 17 bra<br>voltages would be  | nches   | s. The number of different node pair                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | A) 7                                                    |         | the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | C) 45                                                   | B)      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 94.  | The cut-set sek 1                                       | D)      | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | The cut-set schedule gives the relation                 | betw    | reen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | <ul> <li>A) branch currents and link current</li> </ul> | s       | the Photobio theory with 1981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | B) branch voltages and tree branch                      |         | The second of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | C) branch voltages and link voltages                    | voitag  | es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | D) branch current and tree currents                     |         | aller out of the company of the safe of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 95.  |                                                         |         | Manager of the contract of the |
|      | A network has seven nodes and five in                   | deper   | ndent loops. The number of branches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | in the network is                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | A) 13                                                   | B)      | 12 1298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | C) 11                                                   | D)      | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 96.  | Three equal resistances of 5 $\Omega$ are con           | necte   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | one of the arms of the equivalent star of               | ircuit  | ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | Α) 5 Ω                                                  | B)      | 1.33 Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -    | C) 15 Ω                                                 | D)      | 10 Ω.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 97.  | Superposition theorem is not valid for                  |         | the short of a 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | A) voltage responses                                    | В)      | current responses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1    | C) power responses                                      | D)      | all of these.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 98.  | Maximum power is transferred when th                    |         | A charge of the state of the same of the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 50.  | Maximum power is transferred when the                   | ie ioac | i impedance is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | A) equal to source resistance                           |         | article and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | B) equal to half of the source resistan                 | ice     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | C) equal to zero                                        |         | and the relations to show that the CT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | D) none of these.                                       |         | AND A STATE OF THE |
| 7.00 | M [D]                                                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|   |       | 15.2101                                                                  |                                       |        | the applied voltage in               |  |  |  |  |  |
|---|-------|--------------------------------------------------------------------------|---------------------------------------|--------|--------------------------------------|--|--|--|--|--|
|   | 99.   | Wha                                                                      | at is the phase angle between the cap | acito  | r current and the applied voltage in |  |  |  |  |  |
|   |       | a pa                                                                     | arallel RC circuit ?                  |        |                                      |  |  |  |  |  |
|   |       | A)                                                                       | ·90°                                  | B)     | 0°                                   |  |  |  |  |  |
|   |       | C)                                                                       | 45°                                   | D)     | 180°.                                |  |  |  |  |  |
|   | 100.  | Tru                                                                      | e power is defined as                 |        |                                      |  |  |  |  |  |
|   |       | A)                                                                       | VI cos θ                              | B)     | <b>VI</b>                            |  |  |  |  |  |
|   |       | C)                                                                       | VI sin θ                              | D)     | none of these.                       |  |  |  |  |  |
|   | .101. | 1. In which district is Adichanallur which had been the habitat of human |                                       |        |                                      |  |  |  |  |  |
|   |       | 1                                                                        | ring 1000-2000 BC located ?           | B)     | Ramanathapuram                       |  |  |  |  |  |
|   |       | A)                                                                       | Ariyalur                              |        | Virudhunagar.                        |  |  |  |  |  |
|   |       | C)                                                                       | Tirunelveli                           | D)     |                                      |  |  |  |  |  |
|   | 102.  | 2. Which of the following is measured on the Richter scale?              |                                       |        |                                      |  |  |  |  |  |
|   |       | A)                                                                       | Density of liquids                    | B)     | Intensity of earthquakes             |  |  |  |  |  |
|   |       | C)                                                                       | Velocity of tornadoes                 | D)     | Height of mountains.                 |  |  |  |  |  |
|   | 103.  | . Who got the Nobel Prize for Peace in the year 2011?                    |                                       |        |                                      |  |  |  |  |  |
| • |       | A)                                                                       | Thomas Sargent                        |        |                                      |  |  |  |  |  |
|   |       | B)                                                                       | Christopher Sims                      |        |                                      |  |  |  |  |  |
|   |       | C)                                                                       | Ellen Johnson Sirleaf, Leymah Gbo     | owee a | and Tawakkol Karman                  |  |  |  |  |  |
|   |       | D)                                                                       | Domas Transtroma.                     |        |                                      |  |  |  |  |  |
|   | 104.  | Which country won the Kabaddi World Cup, 2011?                           |                                       |        |                                      |  |  |  |  |  |
|   |       | A)                                                                       | United Kingdom                        | B)     | India                                |  |  |  |  |  |
|   |       | C)                                                                       | Canada                                | D)     | Germany.                             |  |  |  |  |  |
|   | 105.  | The Raman effect is used in the study of                                 |                                       |        |                                      |  |  |  |  |  |
|   |       | A)                                                                       | X-rays                                | B)     | Cells                                |  |  |  |  |  |
|   |       | C)                                                                       | Chromosomes                           | D)     | Molecular energy.                    |  |  |  |  |  |
|   | _     |                                                                          |                                       |        | S.                                   |  |  |  |  |  |
|   | D     |                                                                          |                                       |        |                                      |  |  |  |  |  |

| 106. | Green India Programme is the National Action plan on |                                       |         |                             |           |  |  |
|------|------------------------------------------------------|---------------------------------------|---------|-----------------------------|-----------|--|--|
|      | A)                                                   | Pollution                             | B)      | Climate change              |           |  |  |
|      | C)                                                   | Rainfall                              | D)      | Environment.                |           |  |  |
| 107. | Wha                                                  | t is zero hour?                       |         |                             |           |  |  |
|      | A) .                                                 | When matters of utmost importance     | e are   | raised                      |           |  |  |
|      | B)                                                   | When money bill is introduced in the  | he Lol  | k Sabha                     |           |  |  |
|      | C)                                                   | When proposals of opposition are c    | onsid   | ered                        |           |  |  |
|      | D)                                                   | Interval between morning and even     | ing s   | essions.                    |           |  |  |
| 108. | Whi                                                  | ch of the following is a direct tax?  |         |                             |           |  |  |
|      | A)                                                   | Excise duty                           | B)      | Sales tax                   |           |  |  |
|      | C)                                                   | Income tax                            | D)      | Both (B) & (C).             |           |  |  |
| 109. | Whi                                                  | ch work is known as an encyclopaec    | dia of  | social life in the Eleventh | Century ? |  |  |
|      | A)                                                   | Dasakumaracharita by Dandin           |         |                             |           |  |  |
| i.   | B)                                                   | Kathasaritsagara by Somadeva          |         |                             |           |  |  |
|      | C)                                                   | Karpuramanjari by Rajasekhara         |         |                             |           |  |  |
|      | D)                                                   | Rajatarangini by Kalhana.             |         | f Waterlan 2                |           |  |  |
| 110. | Who                                                  | o led the French forces during the ba | attie c | i waterioo i                |           |  |  |
|      | A)                                                   | Duke of Wellington                    |         |                             |           |  |  |
| 51.  | B)                                                   | Duke of Cornwall                      |         |                             |           |  |  |
|      | C)                                                   | Napoleon Bonaparte                    |         |                             |           |  |  |
|      | D)                                                   | Duke of Scotland.                     |         |                             | Turn over |  |  |
| D    |                                                      |                                       |         |                             |           |  |  |

## SECTION - B

(2 marks each)

111. In the circuit shown below, the value of I is



A) 1 A

B) 2 A

C) 4 A

- D) 8 A.
- 112. A water boiler of home is switched on to the a.c. mains supplying power at 230V/50Hz. The frequency of instantaneous power consumed by the boiler is
  - A) 0 Hz

B) 50 Hz

C) 100 Hz

- D) 150 Hz.
- 113. A series RLC circuit has R = 50  $\Omega$ , L = 100 $\mu$ H and C = 1 $\mu$ F. The lower half power frequency of the circuit is
  - A) 30.55 kHz

B) 51.92 kHz

C) 3.055 kHz

- D) 1.92 kHz.
- 114. The electron and hole concentrations in an intrinsic semiconductor are  $n_i$  and  $p_i$  respectively. When doped with the p type material, these change to n and p respectively, then
  - A)  $n+p=n_i+p_i$

B)  $n + n_i = p + p_i$ 

C)  $np_i = n_i p$ 

D)  $np = n_i p_i$ 

- 115. An n-channel JFET has IDSS = 1 mA and  $V_p$  = -5V. Its maximum transconductance is
  - A) 0.1 millimho

B) 0.4 millimho

C) 1.0 millimho

- D) 4.0 millimho.
- 116. An op-amp having a slew rate of 62.8 V/m sec is connected in a voltage follower configuration. If the maximum amplitude of the input sinusoidal is 10V, then the minimum frequency at which the slew rate limited distortion would set in at the output is
  - A) 1.0 MHz

B) 6.28 MHz

C) 10.0 MHz

- D) 62.8 MHz.
- 117. For the logic circuit shown in the figure, the output Y is given by



A) (A.B+C)DE

B) (A+B)C+DE

C) AB + C(D+E)

- D) (A + B) C + D + E.
- 118. The number of comparators in a parallel conversion type 8-bit A/D converter-is
  - A) 8

B) 16

C) 255

D) 256.

|      |      |             |               |              |       |                    | 200          |          |          |
|------|------|-------------|---------------|--------------|-------|--------------------|--------------|----------|----------|
| 12P  | r-04 |             |               | 22           |       |                    |              |          |          |
| 119. | Fou  | r memory o  | hips of 16 ×  | 4 size have  | their | address            | ouses con    | nected 1 | together |
|      | The  | system will | be of size    |              |       |                    | linute en en | 10 07 02 |          |
|      | A)   | 64 × 64     |               |              | B)    | 16 × 16            | en models    |          |          |
|      | C)   | 32 × 8      |               |              | D)    | 256 × 1.           |              |          |          |
| 120. | The  | following p | program is w  | ritten for a | n 808 | 5 micropr          | ocessor to   | add tv   | vo byte  |
|      | loca | ted at mem  | ory addresses | IFFE and     | IFFF  |                    |              |          |          |
|      |      | LXIH, IF    | FE            |              | 16    | n seker<br>sumbili |              |          |          |
|      |      | MOV         | В, М          |              |       |                    |              | 31. THE  |          |
|      |      | INR         | L             |              |       |                    |              |          |          |
|      |      | MOV         | A, M          |              |       |                    |              | # 7      |          |
|      |      | ADD         | В             | ele ele      | 1 1/2 |                    | 610 48       |          |          |
|      |      | INR         | L             |              |       | ( (                | ei .         |          |          |

On completion of the execution of the program, the result of addition is found

A) in the register A

MOV

XOR

- B) at the memory address 1000
- C) at the memory address IFOO

M, A

- D) at the memory address 2000.
- 121. An antenna has 40  $\Omega$  antenna resistance and 60  $\Omega$  radiation resistance. The efficiency of the antenna will be
  - A) 30 %

B) 40 %

C) 50 %

D) 60 %.

| 122. | A tr                                                                        | transmission line having 50 $\Omega$ impedance is terminated in a load of                     |                   |                         |                 |                        |                 |  |  |  |  |
|------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------|-------------------------|-----------------|------------------------|-----------------|--|--|--|--|
|      | $(40 + j 30 \Omega)$ . The VSWR is                                          |                                                                                               |                   |                         |                 |                        |                 |  |  |  |  |
|      | A)                                                                          | j 0·033                                                                                       |                   | В)                      | 0·8 + j 0·6     |                        | N. 2 500        |  |  |  |  |
|      | C)                                                                          | 1                                                                                             |                   | D)                      | 2.              | tr v. E.               |                 |  |  |  |  |
| 123. | The                                                                         | The cut-off wavelength $\lambda_C$ for $TE_{20}$ mode for a standard rectangular waveguide is |                   |                         |                 |                        |                 |  |  |  |  |
|      | A)                                                                          | 2                                                                                             |                   |                         |                 |                        |                 |  |  |  |  |
|      | A)                                                                          | a                                                                                             |                   | B)                      | 2 a             |                        |                 |  |  |  |  |
|      | C)                                                                          | а                                                                                             |                   | D)                      | 2 a 2.          |                        | STATE OF STREET |  |  |  |  |
| 124. | A pa                                                                        | rabolic refle                                                                                 | ctor is designed  | to have a dir           | rectivity of 30 | dB at 300 MHz. If the  |                 |  |  |  |  |
|      | aper                                                                        | aperture efficiency is 55 %, then the half power bandwidth is                                 |                   |                         |                 |                        |                 |  |  |  |  |
|      | A)                                                                          | 4·31°                                                                                         |                   | B)                      | 8-62°           |                        |                 |  |  |  |  |
|      | C)                                                                          | 17·24°                                                                                        |                   | D)                      | none of thes    | e.                     |                 |  |  |  |  |
| 105  | A 1                                                                         | A 1 km long microwave link uses two antennas each having 30 dB gain. If the                   |                   |                         |                 |                        |                 |  |  |  |  |
| 125  | power transmitted by one antenna is 1 watt 3 GHz, the power received by the |                                                                                               |                   |                         |                 |                        |                 |  |  |  |  |
|      | 3.25                                                                        |                                                                                               |                   | ma is I wa              |                 | 1996                   | 23              |  |  |  |  |
|      | othe                                                                        | er antenna is                                                                                 | s approximately   | 1                       |                 | 199                    |                 |  |  |  |  |
|      | A)                                                                          | 98∙6 μW                                                                                       |                   | В)                      | 76⋅8 μW         |                        |                 |  |  |  |  |
|      | (C)                                                                         | 63·4 μW                                                                                       |                   | D)                      | 55·2 μW.        |                        |                 |  |  |  |  |
| 126  | . The                                                                       | transfer fur                                                                                  | nction of a syste | m is $\frac{10}{1+s}$ . | When operat     | ed as a unity feedback |                 |  |  |  |  |
|      | system, the steady state error to a unit step input will be                 |                                                                                               |                   |                         |                 |                        |                 |  |  |  |  |
|      | syst                                                                        | tem, the stea                                                                                 | idy state circ    |                         | 1               | 31. St 17 - 17         |                 |  |  |  |  |
|      | A)                                                                          | 0                                                                                             |                   | B)                      | 11              |                        |                 |  |  |  |  |
|      |                                                                             |                                                                                               |                   |                         |                 | E KIN MILL THE S       |                 |  |  |  |  |
|      | C)                                                                          | 10                                                                                            |                   | D)                      | 00.             |                        |                 |  |  |  |  |
|      |                                                                             |                                                                                               |                   |                         |                 | [ Turn over            |                 |  |  |  |  |
| D    | V.                                                                          |                                                                                               |                   |                         |                 |                        | A STATE         |  |  |  |  |
|      |                                                                             |                                                                                               |                   |                         |                 |                        |                 |  |  |  |  |
|      |                                                                             |                                                                                               |                   |                         |                 | 2806 Mar. 1907         | M               |  |  |  |  |

127. The maximum phase shift that can be obtained by using a lead compensator with transfer function

$$G_{C}(s) = \frac{4(1+0.15s)}{(1+0.05s)}$$
 is equal to

A) 15°

B) 30°

C) 45°

D) 60°

128. The transfer function Y(s)/U(s) of a system described by the state equations

$$\dot{x}(t) = -2x(t) + 2u(t)$$
 and

$$\dot{y}(t) = 0.5 x(t), \text{ is}$$

A)  $\frac{0.5}{(s-2)}$ 

B)  $\frac{1}{(s-2)}$ 

C)  $\frac{0.5}{(s+2)}$ 

 $D) \qquad \frac{1}{(s+2)}.$ 

129. The FM signal is being broadcast in the 88-108 MHz band having a carrier swing of 125 kHz. The modulation index is

A) 100 %

B) 83 %

C) 67 %

D) 50 %:

130. In a PCM system each quantization level is encoded into 8 bits. The signal to quantization noise ratio is

A) 12 dB

B) 48 dB

C) 64 dB

D) 256 dB.



136. The value of the determinant

A) 6

B) 16

C) 19

D) 25.

137. If 
$$A = \begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$$
 then  $(A - 2I)$   $(A - 3I)$  is

A) A

B) 1

C) 0

D) 5 I.

138. If 
$$y = \tan^{-1} \frac{\sqrt{1 + x^2} - 1}{x}$$
 then

A) y'(0) = 1

B)  $y'(0) = \frac{1}{2}$ 

C) y'(0) = 0

- D) y'(0) does not exist.
- 139. If the probability of a defective bolt is 0.1, then the mean and standard deviation for the distribution of bolts in a total of 400 are
  - A) 30, 3

B) 40, 5

C) 30, 4

- D) 40, 6.
- 140. The voltage V in the figure shown below is equal to



A) 3 V

B) - 3 V

C) 5 V

D) none of these.

- 141. The output of a linear system to unit step input u(t) is  $t^2 e^n$ . The system

- 142. The period of the function  $\cos \frac{\pi}{4}(t-1)$  is

B) 8 s

- 143. Given  $f(t) = 3e^{-4t} u(t)$ . Its Fourier transform F(w) at w = 4 is

- 144. The transfer function of a system is given by  $H(s) = \frac{1}{s^2(s-2)}$ . The impulse response of the system is

145. In the signal flow graph of figure given below, the gain C/R will be



A)  $\frac{11}{9}$ 

B) 22

C)  $\frac{24}{23}$ 

D)  $\frac{44}{23}$ 

146. Two identical FETs each characterized by the parameters  $g_m$  and  $r_d$  are connected in parallel. The composite FET is then characterized by the parameters

A)  $\frac{g_m}{2}$  and 2  $r_d$ 

B)  $\frac{g_m}{2}$  and  $\frac{r_d}{2}$ 

C)  $2 g_m$  and  $\frac{r_d}{2}$ 

D)  $2 g_m$  and  $2 \pi_d$ .

147. If  $\alpha = 0.995$ ,  $I_E = 10$  mA and  $I_{co} = 0.5$   $\mu$ A then  $I_{CEO}$  will she

Α) 25 μΑ

B) 100 μA

·C) 10·1 mA

D) 10.5 mA

148. The RMS value of a half wave rectified symmetrical square wave current 2A is

A) √2 A

B) 1 A

C)  $\frac{1}{\sqrt{2}}$  A

D) √3 A.

149. For the n-channel enhancement MOSFET shown in the given figure, the threshold voltage  $V_{TH}$  = 2V. The drain current  $I_D$  of the MOSFET is 4 mA when the drain resistance  $R_D$  is 1 k  $\Omega$ . If the value of  $R_D$  is increased to 4 k  $\Omega$ , drain current  $I_D$  will become



A) 2.8 mA

B) 2.0 mA

C) 1.4 mA

D) 1.0 mA.

150. For the circuit of figure shown below the value of  $I_B$  is



R) 30-24 μA