1. यदि

$$A = \left\{ x \mid \frac{x}{2} \in \mathbb{Z}, \, 0 \le x \le 10 \right\},\,$$

 $\mathbf{B} = \{x \mid x \text{ एक अंकीय अभाज्य संख्या है} }$ और

$$C = \left\{ x \mid \frac{x}{3} \in \mathbb{N}, x \le 12 \right\},$$
तब $A \cap (B \cup C)$

(1) {2, 6}

(2) $\{3,6\}$

(3) {2, 6, 12}

(4) {3, 6, 12}

2. समुच्चय A और B में 5 उभयनिष्ठ अवयव है, तो A × B और B × A में उभयनिष्ठ अवयवों की संख्या है

- (1) 2⁵
- $(2) 5^2$
- (3) 5
- (4) 0

3. पूर्णांकों के समुच्चय में एक सम्बन्ध R परिभाषित है जहाँ aRb यदि और केवल यदि a² और b² परस्पर अभाज्य नहीं है । तो सम्बन्ध R किस गुणधर्म को सन्तुष्ट नहीं करता है ?

- (1) स्वतुल्यता
- (2) सममितता
- (3) संक्रामकता
- (4) इनमें से कोई नहीं

4. यदि A, 10 से छोटी प्राकृत संख्याओं का समुच्चय है और B, 9 से छोटी अभाज्य संख्याओं का समुच्चय है, तब A से B पर परिभाषित सम्बन्धों की संख्या है

- $(1) 2^{16}$
- $(2) 2^8$
- $(3) 2^7$
- (4) $2^9 1$

5. यदि फलन $f: R \rightarrow R$, $f(x) = x^2$ के रूप में परिभाषित है, तब फलन f है:

- (1) एकैकी पर आच्छादक नहीं
- (2) आच्छादक पर एकैकी नहीं
- (3) एकैकी एवं आच्छादक
- (4) ना तो एकैकी, ना ही आच्छादक

 $6. \qquad \lim_{x \to \infty} \left(\frac{x}{1+x} \right)^{2x} \text{ axiat } \frac{x}{6}$

- (1) e
- (2) 2ϵ
- $(3) \ \frac{1}{e}$
- (4) $\frac{1}{e^2}$

1. If $A = \left\{ x \mid \frac{x}{2} \in \mathbb{Z}, \ 0 \le x \le 10 \right\}$,

 $B = \{x \mid x \text{ is prime number of one digit}\}$ and

 $C = \left\{ x \mid \frac{x}{3} \in \mathbb{N}, x \le 12 \right\}, \text{ then } A \cap (B \cup C)$ is equal to

- $(1) \{2, 6\}$
- (2) {3, 6}
- (3) {2, 6, 12}
- (4) $\{3, 6, 12\}$

2. Sets A and B have 5 common elements. Then number of elements common to $A \times B$ and $B \times A$ is

- $(1) 2^5$
- $(2) 5^2$
- (3) 5
- (4) 0

3. A relation R is defined on set of integers where aRb if and only if a² and b² are not prime to each other, then relation R does not satisfy the property

- (1) Reflexive
- (2) Symmetric
- (3) Transitive
- (4) None of these

4. If A is the set of natural numbers less than 10 and B is the set of prime numbers less than 9, then the number of relations defined from A to B is

- $(1) 2^{16}$
- $(2) 2^8$
- $(3) 2^7$
- (4) $2^9 1$

5. If function $f : R \rightarrow R$ defined as $f(x) = x^2$, then function f is

- (1) one-one but not onto
- (2) onto but not one-one
- (3) one-one and onto

(4) neither one-one nor onto

6. $\lim_{x \to \infty} \left(\frac{x}{1+x} \right)^{2x}$ is equal to

- (1) e
- (2) 2e
- (3) $\frac{1}{e}$
- (4) $\frac{1}{e^2}$

- 7. संख्या है :
 - (1) एक बिन्दु
 - (2) दो बिन्द
 - (3) तीन बिन्दु
 - (4) अनन्त बिन्द
- फलन f इस प्रकार परिभाषित है कि 8.

$$x = 1 \text{ qt } f(x) = \begin{cases} ax^2 - b, & |x| < 1 \\ \frac{-1}{|x|}, & |x| \ge 1 \end{cases}$$

अवकलनीय है, तो a और b के मान हैं :

- (1) a = 1, b = -1 (2) $a = b = \frac{1}{2}$
- (3) $a = \frac{1}{2}, b = \frac{3}{2}$ (4) $a = \frac{1}{2}, b = -1$
- 9. $a = \tan^{-1} \left[\frac{3a^2x x^3}{a(a^2 3r^2)} \right]$, $a = \frac{dy}{dx}$ axist $b = \frac{dy}{dx}$
 - (1) $\frac{3}{a^2+x^2}$ (2) $\frac{a}{a^2+x^2}$

 - (3) $\frac{3a}{a^2+v^2}$ (4) $\frac{3x}{a^2+v^2}$
- 10. यदि f'(c) विद्यमान है और अशन्य है, तब $\lim_{h\to 0} \frac{f(c+h) + f(c-h) - 2f(c)}{h}$ बराबर है :
 - (1) 0
- (2) f'(c)
- (3) 2 f'(c)
- (4) f'(c) + f(c)
- 11. $i\left(\frac{3-i}{2+i} + \frac{3+i}{2-i}\right)$ का कोणांक है :
 - $(1) \frac{\pi}{2}$
- (3) $-\frac{\pi}{4}$ (4) $\frac{\pi}{4}$

- फलन $f(x) = \frac{1}{\log |x|}$ के असंतता बिन्दुओं की \int Function $f(x) = \frac{1}{\log |x|}$ is discontinuous

 - (1) one point
 - (2) two points
 - (3) three points
 - (4) infinite number of points
 - The values of a and b, such that the 8. function f defined as

$$f(x) = \begin{cases} ax^2 - b , & |x| < 1 \\ \frac{-1}{|x|} , & |x| \ge 1 \end{cases}$$

is differentiable at x = 1, are

- (1) a = 1, b = -1 (2) $a = b = \frac{1}{2}$
- (3) $a = \frac{1}{2}, b = \frac{3}{2}$ (4) $a = \frac{1}{2}, b = -1$
- If $y = \tan^{-1} \left[\frac{3a^2x x^3}{a(a^2 3x^2)} \right]$, then $\frac{dy}{dx}$ is equal to
 - (1) $\frac{3}{a^2+r^2}$
- (2) $\frac{a}{a^2 + r^2}$
- (3) $\frac{3a}{a^2 + r^2}$ (4) $\frac{3x}{a^2 + r^2}$
- If f'(c) exists and non-zero, then 10. $\lim_{h\to 0} \frac{f(c+h) + f(c-h) - 2f(c)}{h}$

is equal to

- (1) 0
- (2) f'(c)
- (3) 2 f'(c)
- (4) f'(c) + f(c)
- The amplitude of $i\left(\frac{3-i}{2+i} + \frac{3+i}{2-i}\right)$ is equal to

- 12. यदि $|z \frac{4}{z}| = 2$, तो |z| का अधिकतम मान है :
 - (1) $\sqrt{5}-1$
- (2) $\sqrt{5} + 1$
- (3) $\sqrt{5}$
- (4) इनमें से कोई नहीं
- 13. -i का वर्गमूल है

 - (1) $\pm \frac{1}{\sqrt{2}} (1-i)$ (2) $\pm \frac{1}{\sqrt{2}} (1+i)$
 - (3) $\pm (1-i)$
- (4) $\pm (1+i)$
- 14. यदि वे और b असमरेखीय सदिश हैं तथा x और y इस प्रकार अदिश हैं कि $x\vec{a} + y\vec{b} = 0$, तो
 - (1) $x = 0, y \neq 0$
 - (2) x = 0, y = 0
 - (3) $x \neq 0, y \neq 0$
 - (4) x = 1, y = 1
- 15. यदि बें , bें , टे तीन अशून्य सदिश हैं तो $|(\vec{a} \times \vec{b}) \cdot \vec{c}| = |\vec{a}| |\vec{b}| |\vec{c}|$ यदि और केवल यदि
 - (1) $\vec{a} \cdot \vec{b} = 0$: $\vec{b} \cdot \vec{c} = 0$
 - (2) $\overrightarrow{b} \cdot \overrightarrow{c} = 0$: $\overrightarrow{c} \cdot \overrightarrow{a} = 0$
 - (3) $\overrightarrow{c} \cdot \overrightarrow{a} = 0$: $\overrightarrow{a} \cdot \overrightarrow{b} = 0$
 - (4) $\overrightarrow{a} \cdot \overrightarrow{b} = 0$: $\overrightarrow{b} \cdot \overrightarrow{c} = 0$: $\overrightarrow{c} \cdot \overrightarrow{a} = 0$
- 16. यदि $x^p y^q = (x + y)^{p+q}$, तो $\frac{dy}{dx}$ बराबर है :
 - (1) $\frac{y}{x}$

- (3) $\frac{(x+y)}{x}$ (4) $\frac{(x+y)}{y}$

- 12. If $\left|z \frac{4}{z}\right| = 2$, then the maximum value of |z| is
 - (1) $\sqrt{5}-1$ (2) $\sqrt{5}+1$
 - (3) $\sqrt{5}$
- (4) None of these
- 13. The square root of -i is

 - (1) $\pm \frac{1}{\sqrt{2}} (1-i)$ (2) $\pm \frac{1}{\sqrt{2}} (1+i)$
 - (3) $\pm (1-i)$ (4) $\pm (1+i)$
- 14. If \vec{a} and \vec{b} are non-collinear vectors and x and y are scalars such that $x\vec{a} + y\vec{b} = 0$, then
 - (1) $x = 0, y \neq 0$
 - (2) x = 0, y = 0
 - (3) $x \neq 0, y \neq 0$
 - (4) x = 1, y = 1
- If \vec{a} , \vec{b} , \vec{c} be three non-zero vectors, 15. then $|(\vec{a} \times \vec{b}) \cdot \vec{c}| = |\vec{a}| |\vec{b}| |\vec{c}|$ if and only if
 - (1) $\overrightarrow{a} \cdot \overrightarrow{b} = 0$: $\overrightarrow{b} \cdot \overrightarrow{c} = 0$
 - (2) $\overrightarrow{b} \cdot \overrightarrow{c} = 0$: $\overrightarrow{c} \cdot \overrightarrow{a} = 0$
 - (3) $\vec{c} \cdot \vec{a} = 0$; $\vec{a} \cdot \vec{b} = 0$
 - (4) $\overrightarrow{a} \cdot \overrightarrow{b} = 0$; $\overrightarrow{b} \cdot \overrightarrow{c} = 0$; $\overrightarrow{c} \cdot \overrightarrow{a} = 0$
- 16. If $x^p y^q = (x + y)^{p+q}$, then $\frac{dy}{dx}$ is equal
 - (1) $\frac{y}{r}$
- $(3) \quad \frac{(x+y)}{x}$
- $(4) \quad \frac{(x+y)}{y}$

- 17. $\overline{u}(x^2 + y^2) = t \frac{1}{t}$; $x^4 + y^4 = t^2 + \frac{1}{t^2}$, $\overline{\eta}$ $\frac{dy}{dx}$ बराबर है:
- (1) $\frac{1}{r^3v}$

- (3) $-\frac{1}{r^3v}$ (4) $-\frac{1}{rv^3}$
- 18. यदि $y = \frac{\sin^{-1}x}{\sqrt{1-x^2}}$, तो $(1-x^2)\frac{dy}{dx}$ बराबर है :
 - (1) x + y
- (2) xy + 1
- (3) 1 xy
- (4) xy 2
- फलन $f(x) = x^4 x$ किस अन्तराल में वर्द्धमान 19.
 - (1) -1 < x < 1
 - (2) $-1 \le x \le 1$
 - (3) $x \le 1$
 - (4) $x \ge 1$
- $f(x) = x^x$ हासमान फलन है यदि
 - (1) x > e
- (3) x = e
- (4) $x > \frac{1}{2}$
- 21. $\int \frac{x^2}{\sqrt{x^6 9}} dx = \sqrt{8}$
 - (1) $\frac{1}{6} \left[x^3 \sqrt{x^6 9} + 9 \log \left(x^3 + \sqrt{x^6 9} \right) \right]$
 - (2) $\frac{1}{3} \left[x^3 \sqrt{x^6 9} + 9 \log \left(x^3 + \sqrt{x^6 9} \right) \right]$
 - (3) $\frac{1}{6} \left[x^3 \sqrt{x^6 9} + 3 \log \left(x^3 + \sqrt{x^6 9} \right) \right]$
 - (4) $\frac{1}{6} \left[x^3 \sqrt{x^6 9} 9 \log \left(x^3 + \sqrt{x^6 9} \right) \right]$

- 17. If $x^2 + y^2 = t \frac{1}{t}$; $x^4 + y^4 = t^2 + \frac{1}{t^2}$, then $\frac{dy}{dx}$ is equal to
 - (1) $\frac{1}{x^3y}$
- (3) $-\frac{1}{r^3v}$ (4) $-\frac{1}{rv^3}$
- 18. If $y = \frac{\sin^{-1}x}{\sqrt{1 x^2}}$, then $(1 x^2) \frac{dy}{dx}$ is equal
 - (1) x + y
- (2) xy + 1
- (3) 1 xy. (4) xy 2
- 19. Function $f(x) = x^4 - x$ is increasing in the interval
 - (1) $-1 \le x \le 1$
 - (2) $-1 \le x \le 1$
 - (3) $x \le 1$
 - (4) $x \ge 1$
- $f(x) = x^{\frac{1}{x}}$ is a decreasing function if 20.
- (2) x < e
- (3) x = e (4) $x > \frac{1}{2}$
- 21. $\int \frac{x^2}{\sqrt{x^6-9}} dx$ is equal to
 - (1) $\frac{1}{6} \left[x^3 \sqrt{x^6 9} + 9 \log \left(x^3 + \sqrt{x^6 9} \right) \right]$
 - (2) $\frac{1}{3} \left[x^3 \sqrt{x^6 9} + 9 \log \left(x^3 + \sqrt{x^6 9} \right) \right]$
 - (3) $\frac{1}{6} \left[x^3 \sqrt{x^6 9} + 3 \log(x^3 + \sqrt{x^6 9}) \right]$
 - (4) $\frac{1}{6} \left[x^3 \sqrt{x^6 9} 9 \log \left(x^3 + \sqrt{x^6 9} \right) \right]$

$$22. \int \frac{\mathrm{d}x}{1+3\sin^2 x} \, \mathrm{d}x \, \mathrm{d}x$$

- (1) $\frac{1}{2} \tan^{-1} (\tan x)$
- (2) $2 \tan^{-1} (\tan x)$
- (3) $\frac{1}{2} \tan^{-1} (2 \tan x)$
- (4) $2 \tan^{-1} \left(\frac{1}{2} \tan x \right)$

23.
$$a = \frac{\log (x + \sqrt{1 + x^2})}{\sqrt{1 + x^2}} dx = gof(x) + C,$$

- (1) $f(x) = \log(x + \sqrt{1 + x^2})$ और $g(x) = \sqrt{1 + x^2}$
- (2) $f(x) = \log (x + \sqrt{1 + x^2})$ और $g(x) = x^2$
- (3) $f(x) = \log(x + \sqrt{1 + x^2})$ और $g(x) = \frac{x^2}{2}$
- (4) $f(x) = \frac{x^2}{2}$ sint $g(x) = \log (x + \sqrt{1 + x^2})$

- (1) sin x में घात 5 का एक बहुपद
- (2) e^x में घात 4 का एक बहुपद
- (3) $\cos x$ में घात 5 का एक बहुपद
- (4) $\tan x$ में घात 5 का एक बहुपद
- 25. यदि $f: R \to R, g: R \to R$ संतत फलन हैं, तब

$$\int\limits_{-\pi/2}^{\pi/2} \left[f(x) + f(-x) \right] \left[g(x) - g(-x) \right] dx$$
 बराबर है

- (1) 1
- (2)
- (3) -1
- (4) n

22.
$$\int \frac{\mathrm{d}x}{1+3\sin^2 x}$$
 is equal to

- (1) $\frac{1}{2} \tan^{-1} (\tan x)$
- (2) $2 \tan^{-1} (\tan x)$
- (3) $\frac{1}{2} \tan^{-1} (2 \tan x)$
- (4) $2 \tan^{-1} \left(\frac{1}{2} \tan x \right)$

23. If
$$\int \frac{\log(x + \sqrt{1 + x^2})}{\sqrt{1 + x^2}} dx = gof(x) + C$$
, then

- (1) $f(x) = \log(x + \sqrt{1 + x^2})$ and $g(x) = \sqrt{1 + x^2}$
- (2) $f(x) = \log(x + \sqrt{1 + x^2})$ and $g(x) = x^2$
- (3) $f(x) = \log (x + \sqrt{1 + x^2})$ and $g(x) = \frac{x^2}{2}$
- (4) $f(x) = \frac{x^2}{2}$ and $g(x) = \log (x + \sqrt{1 + x^2})$

24. The
$$\int \frac{\sin^2 x}{\cos^6 x} dx$$
, is

- (1) a polynomial of degree 5 in $\sin x$
- (2) a polynomial of degree 4 in e^x
- (3) a polynomial of degree 5 in $\cos x$
- (4) a polynomial of degree 5 in $\tan x$
- 25. If $f: R \to R$, $g: R \to R$ are continuous functions, then

$$\int_{-\pi/2}^{\pi/2} [f(x) + f(-x)] [g(x) - g(-x)] dx \text{ is}$$

- equal to
- (2) 0
- (1) 1 (3) -1
- (4) π

- 26. निम्न में से कौन सी अवकल समीकरण 3 क्रम की रैखिक समीकरण है?
 - (1) $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + y^2 = x^2$
 - (2) $x \frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} = e^x$
 - (3) $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} \cdot \frac{dy}{dx} + y = x$
 - (4) इनमें से कोई नहीं।
- 27. $\frac{dy}{dx} = \frac{1}{x+y+1}$ का हल है
 - (1) y = log(x + y 2) + C + 1
 - (2) $y + 1 = \log(x + y + 2) + C$
 - (3) $y + \log(x + y 2) = C$
 - (4) $2y + 1 + \log(x + y + 2) = C$
- 28. $x(x-1)\frac{dy}{dx} = (x-2)y + x^3(2x-1)$

का समाकलन गुणक है :

- (1) $\frac{x-1}{x^3}$
- (2) $\frac{x^2}{x-1}$
- (3) $\frac{x-1}{x^2}$
- (4) $\frac{x^3}{2x-1}$
- **29.** $\frac{dy}{dx} = e^{x-y} + x^2 e^{-y}$ का हल है
 - (1) $e^y = e^x + \frac{x^3}{3} + C$
 - (2) $e^y = e^{-x} + \frac{x^3}{3} + C$
 - (3) $e^{-y} = e^x + x^3 + C$
 - (4) $e^{-y} = e^{-x} + \frac{x^3}{3} + C$

- 26. Which of the following differential equation is a linear equation of order 3?
 - (1) $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + y^2 = x^2$
 - (2) $x \frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} = e^x$
 - (3) $\frac{d^3y}{dy^3} + \frac{d^2y}{dy^2} \cdot \frac{dy}{dx} + y = x$
 - (4) None of these
- 27. The solution of $\frac{dy}{dx} = \frac{1}{x+y+1}$ is
 - (1) y = log(x + y 2) + C + 1
 - (2) y + 1 = log(x + y + 2) + C
 - (3) $y + \log(x + y 2) = C$
 - (4) $2y + 1 + \log(x + y + 2) = C$
- 28. Integrating factor of

$$x(x-1)\frac{dy}{dx} = (x-2)y + x^3(2x-1)$$

ie

- (1) $\frac{x-1}{x^3}$
- (2) $\frac{x^2}{x-1}$
- (3) $\frac{x-1}{x^2}$
- (4) $\frac{x^3}{2x-1}$
- 29. The solution of

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{x-y} + x^2 \mathrm{e}^{-y} \mathrm{is}$$

- (1) $e^y = e^x + \frac{x^3}{3} + C$
- (2) $e^y = e^{-x} + \frac{x^3}{3} + C$
- (3) $e^{-y} = e^x + x^3 + C$
- (4) $e^{-y} = e^{-x} + \frac{x^3}{3} + C$

$$30. \quad \frac{\mathrm{dy}}{\mathrm{dx}} = \frac{x+y}{x-y} \text{ an } \ \mathrm{gen} \ \frac{\$}{\$} -$$

(1)
$$\tan^{-1} \frac{y}{x} = \log(x^2 + y^2) + C$$

(2)
$$2 \tan \frac{y}{x} = \log(x^2 + y^2) + C$$

(3)
$$2 \tan^{-1} \frac{\dot{y}}{x} = \log(x^2 + y^2) + C$$

(4)
$$\tan \frac{y}{x} = 2 \log(x^2 + y^2) + C$$

31. यदि
$${}^{x}P_{3} + {}^{x}C_{x-2} = 14x$$
, तो x बराबर है :

- (1) 5
- (2) 10
- (3) 8
- (4) 6

32. यदि
$$(1+x)^n = c_0 + c_1 x + \dots + c_n x^n$$
, तब $c_0 + 2c_1 + 3c_2 + \dots + (n+1) c_n$ का मान है

- (1) $n 2^n$
- (2) $n 2^{n-1}$
- (3) $n 2^n + 2^{n-1}$ (4) $2^n + n 2^{n-1}$

33.
$$(1 + px)^n$$
, n, p \in N के प्रसार में x और x^2 के गुणांक क्रमश: 8 और 24 हैं, तब

- (1) n = 3, p = 2 (2) n = 4, p = 2
- (3) n = 4, p = 3 (4) n = 5, p = 3

34. यदि
$$y = x - x^2 + x^3 - x^4 + \dots$$
, तो --

- (1) $x = y y^2 + y^3 y^4 + \dots$
- (2) $x = y + y^2 + y^3 + y^4 + \dots$
- (3) $x = -y + y^2 y^3 + y^4 \dots$

(4)
$$x = -y - y^2 - y^3 - y^4 - \dots$$

35.
$$(x + a)^{2n}$$
; $n \in N$ के प्रसार में मध्य पद है

- (1) ${}^{2n}C_{n+1} x^{n+1} a^{n+1}$
- (2) ${}^{2n}C_{n+1} x^n a^{n+1}$
- (3) ${}^{2n}C_n x^{n+1} a^{n-1}$
- (4) ${}^{2n}C_n x^n a^n$

30. The solution of
$$\frac{dy}{dx} = \frac{x+y}{x-y}$$
 is

(1)
$$\tan^{-1} \frac{y}{x} = \log(x^2 + y^2) + C$$

(2)
$$2 \tan \frac{y}{x} = \log(x^2 + y^2) + C$$

(3)
$$2 \tan^{-1} \frac{y}{x} = \log(x^2 + y^2) + C$$

(4)
$$\tan \frac{y}{x} = 2 \log(x^2 + y^2) + C$$

31. If
$${}^{x}P_{3} + {}^{x}C_{x-2} = 14x$$
, then x is equal to

- (1) 5
- (2) 10
- (3) 8
- (4) 6

32. If
$$(1+x)^n = c_0 + c_1x + \dots + c_nx^n$$
, then the value of $c_0 + 2c_1 + 3c_2 + \dots + (n+1)c_n$ is equal to

- (1) $n 2^n$
- (2) $n 2^{n-1}$
- (3) $n 2^n + 2^{n-1}$
- (4) $2^n + n 2^{n-1}$

33. In the expansion of
$$(1 + px)^n$$
, n, p \in N, the coefficients of x and x^2 are 8 and 24 respectively, then

- (1) n = 3, p = 2
- (2) n = 4, p = 2
- (3) n = 4, p = 3
- (4) n = 5, p = 3

34. If
$$y = x - x^2 + x^3 - x^4 + \dots$$
, then

(1)
$$x = y - y^2 + y^3 - y^4 + \dots$$

(2)
$$x = y + y^2 + y^3 + y^4 + \dots$$

(3)
$$x = -y + y^2 - y^3 + y^4 - \dots$$

(4)
$$x = -y - y^2 - y^3 - y^4 - \dots$$

35. The middle term in the expansion of
$$(x + a)^{2n}$$
; $n \in N$ is

- $(1)^{-2n}C_{n+1}x^{n+1}a^{n+1}$
- (2) ${}^{2n}C_{n+1} x^n a^{n+1}$
- (3) ${}^{2n}C_n x^{n+1} a^{n-1}$
- (4) ${}^{2n}C_n x^n a^n$

36.
$$\overline{\text{qlq }}F(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

तब F(x) F(y) बराबर है :

- (1) F(x + y)
- (2) F(x y)
- (3) F(x) + F(y)
- (4) F(x) F(y)

37.
$$\overline{\text{uft }} A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$$
, $\overline{\text{ri }} A^n = \overline{\text{trace}} \hat{\text{trace}} \hat{\text{trace}}$:

38.
$$2 = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
, $d = A^{-1} = A^{-1}$

- (2) A^2
- (4) $\frac{1}{2}(A-2I)$

39. यदि
$$x$$
, y , z धनात्मक संख्याएं हैं, तो

$$\begin{vmatrix} 1 & \log_x y & \log_x z \\ \log_y x & 1 & \log_y z \end{vmatrix}$$
 बराबर है $\log_z x & \log_z y = 1$

- (1) 0

- (3) $\log_{a} xyz$ (4) $\log_{a} (x + y + z)$

40. समीकरण निकाय
$$x + 2y + 3z = 1$$
; $2x + y + 3z = 2$ और $5x + 5y + 9z = 4$ का

- (1) कोई हल नहीं है।
- (2) अद्वितीय हल है।
- (3) अनन्त हल हैं ।
- (4) इनमें से कोई नहीं।

36. If
$$F(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
,

then F(x) F(y) is equal to

- (1) F(x + y)
- (2) F(x y)
- (3) F(x) + F(y) (4) F(x) F(y)

37. If
$$A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$$
, then A^n is equal to

38. If
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
, then A^{-1} is equal

to

- (1) A
- (2) A^2
- (4) $\frac{1}{2}(A-2I)$

39. If
$$x$$
, y , z are positive numbers, then

- (1) 0
- (2) 3
- (3) $\log_e xyz$
- (4) $\log_{a} (x + y + z)$

40. The system of equations
$$x + 2y + 3z = 1$$
;
 $2x + y + 3z = 2$ and $5x + 5y + 9z = 4$
have

- (1) No solution
- (2) Unique solution
- (3) Infinite solutions
- (4) None of these

- 41. रेखा 3x + y = 9 बिन्दुओं (1, 3) और (2, 7) को जोड़ने वाली रेखा को जिस अनुपात में विभाजित करती है, वह है
 - (1) 3:4 बाह्य रूप से
 - (2) 3:4 आन्तरिक रूप से
 - (3) 4:3 बाह्य रूप से
 - (4) 4:3 आन्तरिक रूप से
- **42.** x = 0, y = 0 और x = c को स्पर्श करने वाले वृत्तों का समीकरण है

(1)
$$x^2 + y^2 - cx \pm cy + \frac{1}{4}c^2 = 0$$

(2)
$$x^2 + y^2 \pm cx - cy + \frac{1}{4}c^2 = 0$$

(3)
$$x^2 + y^2 - cx - cy \pm \frac{c^2}{4} = 0$$

(4)
$$x^2 \pm y^2 + cx + cy - \frac{c^2}{4} = 0$$

- 43. 154 वर्ग इकाई क्षेत्रफल वाले वृत्त के व्यास, रेखाएँ 2x 3y = 5 और 3x 4y = 7 हैं, तब इस वृत्त का समीकरण है:
 - (1) $x^2 + y^2 + 2x 2y = 62$
 - (2) $x^2 + y^2 + 2x 2y = 47$
 - (3) $x^2 + y^2 2x + 2y = 47$
 - (4) $x^2 + y^2 2x + 2y = 62$
- 44. यदि PQ परवलय $y^2 = 4ax$ की एक नाभीय जीवा, नाभि S पर है, तब $\frac{2.SP.SQ}{SP + SO}$ बराबर है :
 - (1) a
- (2) 2a
- (3) 4a
- (4) a^2
- 45. दीर्घवृत्त $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ के संयुग्मी अर्थव्यासों की प्रवणताओं का गुणनफल है
 - (1) $\frac{a^2}{b^2}$
- (2) $-\frac{4a^2}{b^2}$
- (3) $\frac{b^2}{4a^2}$

(4) $-\frac{b^2}{a^2}$

- 41. The line joining the points (1, 3) and (2, 7) is divided by the line 3x + y = 9 in the ratio
 - (1) 3:4 externally
 - (2) 3:4 internally
 - (3) 4:3 externally
 - (4) 4:3 internally
- 42. The equation of circles which touches x = 0, y = 0 and x = c is

(1)
$$x^2 + y^2 - cx \pm cy + \frac{1}{4}c^2 = 0$$

(2)
$$x^2 + y^2 \pm cx - cy + \frac{1}{4}c^2 = 0$$

(3)
$$x^2 + y^2 - cx - cy \pm \frac{c^2}{4} = 0$$

(4)
$$x^2 \pm y^2 + cx + cy - \frac{c^2}{4} = 0$$

- 43. The lines 2x 3y = 5 and 3x 4y = 7 are the diameters of a circle of area 154 square units, then equation of this circle is
 - (1) $x^2 + y^2 + 2x 2y = 62$
 - (2) $x^2 + y^2 + 2x 2y = 47$
 - (3) $x^2 + y^2 2x + 2y = 47$
 - (4) $x^2 + y^2 2x + 2y = 62$
- 44. If PQ is a focal chord of the parabola $y^2 = 4ax$ with focus at S, then $\frac{2.SP.SQ}{SP + SQ}$ is equal to
 - (1) a
- (2) 2a
- (3) 4a
- (4) a^2
- 45. The product of slopes of the conjugate diameters of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, is
 - (1) $\frac{a^2}{b^2}$
- (2) $-\frac{4a^2}{b^2}$
- (3) $\frac{b^2}{4a^2}$
- (4) $-\frac{b^2}{a^2}$

- यदि वक्र $x^4 + y^4 = a^4$ के किसी बिन्दु पर स्पर्श रेखा दोनों अक्षों पर p और q अन्त:खण्ड काटती $\frac{-4}{8}$, $\frac{-4}{100}$ $\frac{-4$
 - (1) $a^{-\frac{4}{3}}$
- (2) $a^{\frac{-1}{2}}$
- (3) $a^{\frac{-1}{3}}$
- वक्र $x = a(\theta + \sin \theta), y = a(1 \cos \theta)$ के $\theta = \frac{\pi}{2}$ पर अभिलम्ब की लम्बाई है
 - (1) 2a
- (3) $\sqrt{2}a$
- (4) $\frac{a}{\sqrt{2}}$
- 48. फलन $g(x) = \frac{f(x)}{x}$, $x \neq 0$ का चरम मान है, जबकि
 - (1) f'(x) = f(x)
- $(2) \quad g'(x) = f(x)$
- (3) f(x) = 0 (4) g(x) = f'(x)
- 49. वक्र $ay^2 = x^2(a x)$ के पाश का क्षेत्रफल है

 - $(1) \ \frac{8a^2}{15} \qquad \qquad (2) \ \frac{4a^2}{15}$
 - (3) $\frac{a^2}{15}$
- (4) $\frac{16a^2}{15}$
- रेखा x = 4 और परवलय $y^2 = 16x$ के मध्य परिबद्ध क्षेत्र का क्षेत्रफल बराबर है
 - $(1) \quad \frac{16}{3} \text{ at } \text{ \mathfrak{p} and \mathfrak{p}}$
 - (2) $\frac{32}{3}$ art sans
 - (3) $\frac{64}{3}$ ari $\frac{64}{3}$ ari $\frac{64}{3}$
 - (4) $\frac{128}{3}$ art sais

- 46. If the tangent at any point on the curve $x^4 + y^4 = a^4$ cuts off intercepts p and q on the axes, then $p^{\frac{-4}{3}} + q^{\frac{-4}{3}}$ is equal to
 - (1) $a^{\frac{-4}{3}}$

- The length of the normal to the curve 47. $x = a(\theta + \sin \theta), y = a(1 - \cos \theta)$ at $\theta = \frac{\pi}{2}$ is
 - (1) 2a

- (3) $\sqrt{2}a$ (4) $\frac{a}{\sqrt{2}}$
- The function $g(x) = \frac{f(x)}{x}$, $x \ne 0$ has an extreme value, when
 - (1) f'(x) = f(x)
- (2) g'(x) = f(x)
- (3) f(x) = 0
- (4) g(x) = f'(x)
- Area of the loop of the curve 49. $ay^2 = x^2(a - x)$ is
 - (1) $\frac{8a^2}{15}$
- (2) $\frac{4a^2}{15}$
- (3) $\frac{a^2}{15}$
- (4) $\frac{16a^2}{15}$
- 50. The area of the region bounded between the line x = 4 and the parabola $y^2 = 16x$ is equal to
 - (1) $\frac{16}{3}$ square units
 - (2) $\frac{32}{3}$ square units
 - (3) $\frac{64}{3}$ square units
 - (4) $\frac{128}{3}$ square units

- 51. एक बंटन की माध्यिका और मानक विचलन क्रमश: 20 और 4 हैं। यदि बंटन के प्रत्येक मद को 2 से बढ़ा दिया जाये, तब
 - (1) माध्यका और मानक विचलन बढ़ जायेंगे ।
 - (2) माध्यका के मान में 2 बढ़ जायेगा परन्तु मानक विचलन वहीं रहेगा ।
 - (3) माध्यका बढ़ जायेगी परन्तु मानक विचलन घट जायेगा ।
 - (4) माध्यिका घट जायेगी परन्तु मानक विचलन बढ़ जायेगा ।
- 52. X, 75% मामलों में और Y, 80% मामलों में सच बोलते हैं । किसी समान तथ्य को बताते समय प्राधिकता क्या होगी कि दोनों एक-दूसरे का विरोधाभास करे ?
 - (1) $\frac{7}{20}$
 - (2) $\frac{13}{20}$
 - (3) $\frac{3}{20}$
 - (4) $\frac{1}{5}$
- 53. 2 क्रम के सभी सारिणकों के समुच्चय से, जिनमें अवयव केवल 0 अथवा 1 हैं, एक सारिणक का चयन यादृच्छिक आधार पर किया जाता है । चयनित सारिणक के अशुन्य होने की प्रायिकता है :
 - (1) $\frac{3}{16}$
- (2) $\frac{3}{8}$
- (3) $\frac{1}{4}$
- (4) $\frac{1}{2}$
- 54. पूर्णांकों 1 से 11 में से दो पूर्णांकों का यादृच्छिक रूप से चयन किया जाता है । यदि दोनों का योग सम है तो दोनों पूर्णांकों के विषम होने की प्रायिकता है:
 - $(1) \frac{1}{5}$
- (2) $\frac{2}{5}$
- (3) $\frac{3}{5}$
- $(4) \frac{4}{5}$

- 51. The median and Standard Deviation (S.D.) of a distribution are 20 and 4 respectively. If each item of the distribution is increased by 2, then
 - (1) Median and S.D. will increase.
 - (2) Median will go up of 2 but S.D. will remain same.
 - (3) Median will increase but S.D. will decrease.
 - (4) Median will decrease but S.D. will increase.
- 52. X speaks truth in 75% cases and Y in 80% cases. What is the probability that they contradict each other in stating the same fact?
 - (1) $\frac{7}{20}$
 - (2) $\frac{13}{20}$
 - (3) $\frac{3}{20}$
 - (4) $\frac{1}{5}$
- 53. A determinant is chosen at random from the set of all determinants of order 2 with elements 0 or 1 only. The probability that the determinant chosen is non-zero is
 - (1) $\frac{3}{16}$
- (2) $\frac{3}{8}$
- (3) $\frac{1}{4}$
- (4) $\frac{1}{2}$
- 54. Two integers are selected at random from integers 1 to 11. If sum of both is even, then the probability of both the integers being odd is
 - (1) $\frac{1}{5}$
- (2) $\frac{2}{5}$
- (3) $\frac{3}{5}$
- (4) $\frac{4}{5}$

- 55. किसी बंटन का प्रसरण V है । यदि चर के प्रत्येक मान को एक अचर राशि k से गुणा कर दिया जाये, तो नया प्रसरण होगा
 - (1) V
- (2) kV
- (3) k^2V
- (4) 2kV
- 56. यदि G एक अनन्त चक्रीय समूह है, तो G यथार्थत: रखता है:
 - (1) एक जनक
 - (2) दो जनक
 - (3) अनन्त जनक
 - (4) कोई जनक नहीं।
- 57. समूह

 $G = \{a, a^2, a^3, a^4, a^5, a^6\}$ के जनक हैं

- (1) a केवल
- (2) a⁵ केवल
- (3) a⁶ केवल
- (4) a और a⁵
- 58. यदि O(a) = m, O(b) = n जहाँ a और b आबेली समूह G के अवयव हैं, तो
 - (1) $O(ab) = \sqrt{m}$
 - (2) $O(ab) = \sqrt{mn}$
 - (3) O(ab) = mn
 - (4) $O(ab) = ल.स.प. \{m, n\}$
- 59. यदि p अभाज्य संख्या है और G एक अन-आबेली p³ कोटि का समूह है, तब G का केन्द्र यथार्थत: रखता है
 - (1) (p+1) अवयव
 - (2) p² अवयव
 - (3) p अवयव
 - (4) (p-1) अवयव
- **60.** यदि H समूह G का एक उपसमूह है और a, b ∈ G, तो
 - (1) Ha = Hb यदि और केवल यदि $ab^{-1} \in G$
 - (2) Ha = Hb यदि और केवल यदि $ab^{-1} \in H$
 - (3) aH = bH यदि और केवल यदि $(ab)^{-1} \in G$
 - (4) aH = Hb यदि और केवल यदि $ab^{-1} \in H$

- 55. Variance of a distribution is V. If each value of the variate be multiplied by a constant quantity k, then new variance is
 - (1) V
- (2) kV
- (3) k^2V
- (4) 2kV
- 56. If G be an infinite cyclic group, then G has exactly
 - (1) One generator
 - (2) Two generators
 - (3) Infinite generators
 - (4) No generator
- 57. The generator of the group

$$G = \{a, a^2, a^3, a^4, a^5, a^6\}$$
 is/are

- (1) a only
- (2) a^5 only
- (3) a^6 only
- (4) a and a⁵
- 58. If O(a) = m, O(b) = n, where a and b are elements of an abelian group G, then
 - (1) $O(ab) = \sqrt{m}$
 - (2) $O(ab) = \sqrt{mn}$
 - (3) O(ab) = mn
 - (4) $O(ab) = L.C.M. \{m, n\}$
- 59. If p be a prime number and G is a non-abelian group of order p³, then the centre of G has exactly
 - (1) (p+1) elements
 - (2) p² elements
 - (3) p elements
 - (4) (p-1) elements
- 60. If H be a subgroup of a group G and $a, b \in G$, then
 - (1) Ha = Hb iff $ab^{-1} \in G$
 - (2) $Ha = Hb \text{ iff } ab^{-1} \in H$
 - (3) $aH = bH \text{ iff } (ab)^{-1} \in G$
 - (4) $aH = Hb \text{ iff } ab^{-1} \in H$

- 61. माना G एक समूह है और माना H समूह G का कोई उपसमूह है। यदि N, G का कोई प्रसामान्य उपसमूह है, तब
 - $(1) \frac{HN}{N} \cong \frac{H}{(H \cap N)}$
 - $(2) \ \frac{HN}{H} \cong \frac{H}{(H \cap N)}$
 - $(3) \ \frac{HN}{N} \cong \frac{N}{(H \cap N)}$
 - $(4) \frac{HN}{N} = \frac{(H \cap N)}{H}$
- 62. एक आबेली समूह का प्रत्येक उपसमूह होता है
 - (1) अन-आबेली
- (2) चक्रीय
- (3) प्रसामान्य
- (4) सह-समुच्चय
- 63. यदि f, समूह (G, +) से समूह (G, ×) में एक समूह समाकारिता है, तो a, b ∈ G के लिये
 - (1) $f(a \times b) = f(a) + f(b)$
 - (2) $f(a \times b) = f(a) \times f(b)$
 - (3) $f(a+b) = f(a) \times f(b)$
 - (4) f(a+b) = f(a) + f(b)
- 64. निम्न में से कौन सा एक सही है?
 - (1) बलय में यदि $ab = 0 \Rightarrow$ या a = 0 या b = 0
 - (2) प्रत्येक परिमित वलय एक पूर्णांकीय प्रान्त है ।
 - (3) प्रत्येक परिमित पूर्णांकीय प्रान्त एक क्षेत्र होता है।
 - (4) प्राकृत संख्याओं का समुच्चय प्रचलित योग और गुणा के सापेक्ष एक वलय होता है ।
- 65. निम्न में से कौन सा एक पूर्णांकीय प्रान्त नहीं है ?
 - (1) (N, +, .)
- (2) (C, +, .)
- (3) (Q, +, .)

(4) (R, +, .)

- 61. Let G be a group and let H be any subgroup of G. If N be any normal subgroup of G, then
 - $(1) \ \frac{HN}{N} \cong \frac{H}{(H \cap N)}$
 - (2) $\frac{HN}{H} \cong \frac{H}{(H \cap N)}$
 - $(3) \ \frac{HN}{N} \cong \frac{N}{(H \cap N)}$
 - $(4) \ \frac{HN}{N} = \frac{(H \cap N)}{H}$
- 62. Every subgroup of an abelian group is
 - (1) Non-abelian
- (2) Cyclic
- (3) Normal
- (4) Coset
- 63. If f be a group homomorphism from a group (G, +) to a group (G, \times) , then for $a, b \in G$
 - (1) $f(a \times b) = f(a) + f(b)$
 - (2) $f(a \times b) = f(a) \times f(b)$
 - (3) $f(a+b) = f(a) \times f(b)$
 - (4) f(a+b) = f(a) + f(b)
- 64. Which one of the following is correct?
 - (1) In a ring if $ab = 0 \Rightarrow$ either a = 0 or b = 0
 - (2) Every finite ring is an integral domain.
 - (3) Every finite integral domain is a field.
 - (4) The set of natural numbers is a ring with respect to the usual addition and multiplication.
- 65. Which of the following is not an integral domain?
 - (1) (N, +, .)
- (2) (C, +, .)
- (3) (Q, +, .)
- (4) (R, +, .)

- यदि $x^2 + px + 1 = 0$ के मूल a, b हैं और $x^2 +$ qx + 1 = 0 के मूल c, d हैं, तो (a - c) (b - c)(a + d) (b + d) का मान है:
 - (1) $p^2 q^2$
- (2) $q^2 p^2$
- (3) $p^2 + q^2$ (4) 2pq
- **67.** यदि समीकरण $ax^2 + bx + c = 0$ के मूलों का अनुपात r है, तो $\frac{(r+1)^2}{r}$ बराबर है
- (2) $\frac{b^2}{c^2}$

- x = 6 के लिये, बहुपद $x^4 5x^3 5x^2 5x +$ 2 का मान बराबर है
 - (1) 2
- (2) -12
- (3) 1296
- (4) 8
- समीकरण $x^3 18x 35 = 0$ के मूल हैं
 - (1) सभी वास्तविक और समान
 - (2) सभी वास्तविक और मिन्न
 - (3) सभी सम्मिश्र
 - (4) एक वास्तविक और दो सम्मिश्र संयुग्मी
- $x^9 + 5x^8 x^3 + 7x + 2 = 0$ में अधिक से अधिक ऋणात्मक मूलों की संख्या है
 - (1) 1
- (2) 4
- (3) 2
- $(4)^{'}$ 3
- 71. यदि $u = \tan^{-1} \left(\frac{y}{x} \right)$, तब $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ का मान है :
 - (1) 0
- (3) tan u 🕝
- (4) $sec^2 u$

- If a, b are the roots of $x^2 + px + 1 = 0$ and c, d are the roots of $x^2 + qx + 1 = 0$, then the value of (a - c) (b - c) (a + d)(b+d) is
 - $(1) p^2 q^2$
- (3) $p^2 + q^2$
- If the ratio of the roots of the equation $ax^{2} + bx + c = 0$ is r, then $\frac{(r+1)^{2}}{r}$ is equal to
 - $(1) \frac{a^2}{bc}$
- (2) $\frac{b^2}{ca}$

- For x = 6, the value of the polynomial 68. $x^4 - 5x^3 - 5x^2 - 5x + 2$ is equal to
 - (1) 2
- (2) -12
- (3) 1296 .
- (4) 8
- 69. The roots of the equation

$$x^3 - 18x - 35 = 0$$
 are

- (1) all real and equal
- (2) all real and distinct
- (3) all complex
- (4) one real and two complex conjugate
- The number of utmost negative roots in $x^9 + 5x^8 - x^3 + 7x + 2 = 0$ is
 - (1) 1.
- (2) 4
- (3) 2
- (4) 3
- 71. If $u = \tan^{-1} \left(\frac{y}{x} \right)$, then the value of
 - $x\frac{\partial \mathbf{u}}{\partial x} + y\frac{\partial \mathbf{u}}{\partial y}$ is
 - $(1) \ 0$
- (2) u
- (3) tan u
- (4) sec² u

- 72. वक्र p = a sin ψ cos ψ की वक्रता त्रिज्या है :
 - (1) p
- (2) 2p
- (3) 3p
- (4) 4p
- 73. यदि वक्र

$$x^3 - 2y^3 + xy(2x - y) + y(x - y) + 1 = 0$$

की अनन्तस्पर्शियां

x - y = 0, x + y + 1 = 0, x + 2y + 1 = 0वक्र को तीन बिन्दुओं पर पुन: काटती है । तो ये बिन्दु निम्न सरल रेखा पर स्थित हैं :

- (1) x-y-1=0
- (2) x + y + 2 = 0
- (3) x y + 1 = 0
- (4) -x + y + 2 = 0
- 74. $\iint_{0}^{\infty} e^{-(x^2+y^2)} dy dx = 3 + 100$
 - (1) $\frac{\pi}{2}$
- $(2) \ \frac{\pi}{3}$
- $(3) \ \frac{\pi}{4}$
- $(4) \quad \frac{\sqrt{\pi}}{2}$
- 75. यदि क्षेत्र $V, x \ge 0, y \ge 0, z \ge 0, x + y + z \le 1$ से परिबद्ध है, तो $\iiint_V x^{l-1} y^{m-1} z^{n-1} dx$ dy dz बराबर है
 - $(1) \frac{\sqrt{m} \sqrt{n}}{\sqrt{(l+m+n)}}$
 - (2) $\frac{\lceil l \rceil m \rceil n}{\lceil (l+m+n-1)}$

(4) $\frac{\lceil l \rceil \boxed{m} \boxed{n}}{(l+m+n) \boxed{(l+m+n)}}$

- 72. The radius of curvature of the curve $p = a \sin \psi \cos \psi$ is
 - (1) p
- (2) 2p
- (3) 3p
- (4) 4p
- 73. If x y = 0, x + y + 1 = 0, x + 2y + 1 = 0 are the asymptotes of the curve $x^3 2y^3 + xy(2x y) + y(x y) + 1 = 0$ cut the curve again in three points, then these points lie on the straight line
 - (1) x-y-1=0
 - (2) x + y + 2 = 0
 - (3) x y + 1 = 0
 - (4) -x + y + 2 = 0
- 74. $\iint_{0}^{\infty} e^{-(x^2+y^2)} dy dx is equal to$
 - (1) $\frac{\pi}{2}$
- $(2) \ \frac{\pi}{3}$
- $(3) \ \frac{\pi}{4}$
- $(4) \ \frac{\sqrt{\pi}}{2}$
- 75. If V is the region bounded by $x \ge 0$, $y \ge 0$, $z \ge 0$, $x + y + z \le 1$, then $\iiint_{V} x^{l-1} y^{m-1} z^{n-1} dx dy dz \text{ is equal to}$

 - (2) $\frac{\lceil l \mid m \mid n}{\lceil (l+m+n-1) \rceil}$
 - (3) $\frac{\lceil \overline{l} \rceil \boxed{m} \rceil \boxed{n}}{\lceil (lm + mn + nl)}$
 - (4) $\frac{\lceil l \rceil \boxed{m} \boxed{n}}{(l+m+n) \boxed{(l+m+n)}}$

- यदि $f(x) = \sqrt{x^2 4}$; $x \in [2, 4]$, तब f(x) के लिये निम्न में से कौन सा सत्य है?
 - रोली प्रमेय प्रयोज्य है ।
 - (2) लेप्रान्जे प्रमेय प्रयोज्य है ।
 - (3) $C = 2\sqrt{3}$ ∈ (2, 4) विद्यमान है जहाँ f'(c) = 0
 - (4) इनमें से कोई नहीं।
- रोली प्रमेय का प्रयोग करते हुये समीकरण $a_0 x^n + a_1 x^{n-1} + \dots + a_n = 0$ का कम से कम एक मूल 0 और 1 के मध्य होगा, यदि

(1)
$$\frac{a_0}{n} + \frac{a_1}{n-1} + \dots + a_{n-1} = 0$$

(2)
$$\frac{a_0}{n-1} + \frac{a_1}{n-2} + \dots + a_{n-2} = 0$$

(3)
$$na_0 + (n-1)a_1 + + a_{n-1} = 0$$

(4)
$$\frac{a_0}{n+1} + \frac{a_1}{n} + \dots + a_n = 0$$

78. यदि अनुक्रम $\{a_n\}$ तथा $\{b_n\}$ क्रमश: परिमित सीमाओं a तथा b को अभिसृत होती है, तब

$$\lim_{n\to\infty} \frac{a_1b_n + a_2b_{n-1} + \dots + a_nb_1}{n}$$
 बराबर है

- (1) a + b
- (2) a b
- (3) ab
- (4) $\sqrt{(a^2+b^2)}$
- **79.** अनुक्रम $\{x_n\}$ जहाँ

$$x_1 = 1, x_{n+1} = \frac{2x_n + 3}{4} \forall n \in \mathbb{N}, \ \$$

- (1) अभिसारी
- **(2)** अपसारी
- (3) सशर्त अभिसारी
- (4) इनमें से कोई नहीं ।

- If $f(x) = \sqrt{x^2 4}$; $x \in [2, 4]$, then which of the following is true for f(x)?
 - (1) Rolle's theorem is applicable.
 - (2) Lagrange's theorem is applicable.
 - (3) There exists $C = 2\sqrt{3} \in (2, 4)$ s.t. f'(c) = 0.
 - (4) None of these
- Using Rolle's theorem the equation 77. $a_0 x^n + a_1 x^{n-1} + \dots + a_n = 0$ has atleast one root between 0 and 1, if

(1)
$$\frac{a_0}{n} + \frac{a_1}{n-1} + \dots + a_{n-1} = 0$$

(2)
$$\frac{a_0}{n-1} + \frac{a_1}{n-2} + \dots + a_{n-2} = 0$$

(3)
$$na_0 + (n-1)a_1 + ... + a_{n-1} = 0$$

(4)
$$\frac{a_0}{n+1} + \frac{a_1}{n} + \dots + a_n = 0$$

78. If the sequences $\{a_n\}$ and $\{b_n\}$ converges to finite limits a and b respectively, then

$$\lim_{n \to \infty} \frac{a_1 b_n + a_2 b_{n-1} + \dots + a_n b_1}{n}$$
 is equal

- (1) a + b

- (2) a-b(4) $\sqrt{(a^2+b^2)}$
- 79. Sequence $\{x_n\}$ where

$$x_1 = 1, x_{n+1} = \frac{2x_n + 3}{4} \forall n \in \mathbb{N},$$

- (1) convergent
- (2) divergent
- (3) conditionally convergent
- (4) none of these

- यदि p और q वास्तविक धनात्मक संख्याएँ हैं, तो श्रेणी $\frac{2^p}{1^q} + \frac{3^p}{2^q} + \frac{4^p}{3^q} + \dots$ अभिसारी होगी
 - (1) p < q 1
- (3) $p \ge q 1$
- निम्न में से कौनसा कथन गलत है ? 81.
 - (1) $f(z) = \begin{cases} z^2, & z \neq i \\ 0, & z = i \end{cases}; z = i \text{ पर सतत }$
 - (2) $f(z) = |z|^2 \text{ सर्वत्र सतत है } 1$
 - (3) $f(z) = z^n, n \in z^+$ सर्वत्र अवकलनीय
 - (4) $f(z) = |z|^2$ का अवकलज केवल मूल बिन्द पर विद्यमान है ।
- यदि f(z) = u + iv एक विश्लेषिक फलन है, तो निम्न में कौनसा सत्य है?
 - (1) $\frac{\partial u}{\partial r} = r \frac{\partial v}{\partial \theta}; \frac{\partial u}{\partial \theta} = -r \frac{\partial v}{\partial \theta}$
 - (2) $\frac{\partial \mathbf{u}}{\partial \mathbf{r}} = \frac{1}{\mathbf{r}} \frac{\partial \mathbf{v}}{\partial \mathbf{\theta}}; \frac{\partial \mathbf{u}}{\partial \mathbf{\theta}} = -\mathbf{r} \frac{\partial \mathbf{v}}{\partial \mathbf{\theta}}$
 - (3) $\frac{\partial u}{\partial r} = -\frac{1}{r} \frac{\partial v}{\partial \theta}; \frac{\partial u}{\partial \theta} = r \frac{\partial v}{\partial \theta}$
 - (4) $\frac{\partial u}{\partial r} = -r \frac{\partial v}{\partial \theta}; \frac{\partial u}{\partial \theta} = \frac{1}{r} \frac{\partial v}{\partial \theta}$
- फलन $f(z) = \sqrt{|xy|}$ के लिए निम्न में से कौनसा सत्य है ?
 - (1) सर्वत्र विश्लेषिक

- (2) मात्र (0, 0) पर विश्लेषिक
- (3) (0, 0) पर कोशी-रीमान समीकरणें संतुष्ट होती हैं।
- (4) (0, 0) पर कोशी-रीमान समीकरणें संतुष्ट नहीं होती ।

- 80. If p and q are positive real numbers, then the series $\frac{2^{p}}{19} + \frac{3^{p}}{29} + \frac{4^{p}}{39} + \dots$ is convergent if
 - (1) p < q 1
- (2) p < q + 1
- (3) $p \ge q 1$ (4) $p \ge q + 1$
- Which of the following statement is 81.
 - (1) $f(z) = \begin{cases} z^2, & z \neq i \\ 0, & z = i \end{cases}$ is continuous
 - (2) $f(z) = |z|^2$ is continuous everywhere.
 - (3) $f(z) = z^n$, $n \in z^+$ is differentiable everywhere.
 - (4) The derivative of $f(z) = |z|^2$ is exists only at origin.
- If f(z) = u + iv be an analytic function, 82. then which one of the following is true?
 - (1) $\frac{\partial u}{\partial r} = r \frac{\partial v}{\partial \Theta}; \frac{\partial u}{\partial \Theta} = -r \frac{\partial v}{\partial \Theta}$
 - (2) $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}; \frac{\partial u}{\partial \theta} = -r \frac{\partial v}{\partial \theta}$
 - (3) $\frac{\partial u}{\partial r} = -\frac{1}{r} \frac{\partial v}{\partial \theta}; \frac{\partial u}{\partial \theta} = r \frac{\partial v}{\partial \theta}$
 - (4) $\frac{\partial u}{\partial r} = -r \frac{\partial v}{\partial \theta}; \frac{\partial u}{\partial \theta} = \frac{1}{r} \frac{\partial v}{\partial \theta}$
- 83. Which one of the following is true for the function $f(z) = \sqrt{|xy|}$?
 - (1) Analytic everywhere
 - (2) Analytic at (0, 0) only
 - (3) Cauchy-Riemann equations are satisfied at (0, 0)
 - (4) Cauchy-Riemann equations are not satisfied at (0, 0)

- **84.** यदि फलन $u(x, y) = e^{x} \cos y$ प्रसंवादी है तो इसका संयुग्मी प्रसंवादी v(x, y) है :
 - (1) $e^y \cos x + C$
 - (2) $e^x \sin y + C$
 - (3) $e^{y} \sin x + C$
 - (4) $-e^x \cos y + C$
- 85. किस शर्त के तहत रूपान्तरण $w = \frac{(az + b)}{(cz + d)}$ w-समतल में इकाई वृत्त को z-समतल में एक सरल रेखा में रूपान्तरित करता है?
 - (1) |a| = |d|
- (2) |b| = |c|
- (3) |a| = |c|
- (4) |b| = |d|
- **86.** अवकलन समीकरण $(x + a)p^2 + (x y)$ p - y = 0 (जहाँ $p = \frac{dy}{dx}$) का सामान्य हल है
 - (1) $y-cx = \frac{ac^2}{c+1}$
 - (2) $y + \frac{c^2a}{c+1} = cx$
 - (3) $y + c^2x = \frac{ac^2}{c+1}$
 - (4) $y + cx + \frac{a^2c^2}{c+1} = 0$
- 87. अवकल समीकरण $\frac{d^2y}{dx^2} + x = 0$; x(0) = 1; x'(0) = 0, का हल
 - (1) अनन्त की ओर अग्रसर होता है जब $t \to \infty$
 - (2) एक आवर्त्त फलन है।
 - (3) हमेशा इकाई से अधिक या बराबर है।
 - (4) विद्यमान नहीं है ।

- 84. If the function $u(x, y) = e^x \cos y$ is harmonic then its harmonic conjugate v(x, y) is
 - (1) $e^y \cos x + C$
 - (2) $e^x \sin y + C$
 - (3) $e^{y} \sin x + C$
 - $(4) -e^x \cos y + C$
- 85. Under which condition that the transformation $w = \frac{(az+b)}{(cz+d)}$ transforms the unit circle in the w-plane into straight line in the z-plane?
 - (1) |a| = |d|
- (2) |b| = |c|
- (3) |a| = |c|
- (4) |b| = |d|
- 86. The general solution of the differential equation $(x + a)p^2 + (x y)p y = 0$ (where $p = \frac{dy}{dx}$) is
 - (1) $y cx = \frac{ac^2}{c+1}$
 - (2) $y + \frac{c^2a}{c+1} = cx$
 - (3) $y + c^2x = \frac{ac^2}{c+1}$
 - (4) $y + cx + \frac{a^2c^2}{c+1} = 0$
- 87. The solution of the differential equation $\frac{d^2y}{dx^2} + x = 0$; x(0) = 1; x'(0) = 0,
 - (1) approaches to infinity as $t \to \infty$
 - (2) is a periodic function.
 - (3) is always greater than or equal to unity.
 - (4) does not exist.

 $\tilde{\gamma}_{j}$

- अवकल समीकरण $x^2 \frac{d^2y}{dx^2} + 3x \frac{dy}{dx} + y = 0$ 88. का हल है :
 - (1) $y = \frac{(c_1 + c_2 x)}{c_1 + c_2 x}$
 - (2) $y = \frac{(c_1 + c_2 \log x)}{..}$
 - (3) $y = \frac{(c_1 + c_2 x)}{\log x}$
 - (4) $y = x (c_1 + c_2 \log x)$
- आंशिक अवकल समीकरण 89.

$$z(xp - yq) = y^2 - x^2$$
 का हल है

- (1) f(x + y + z) = 0
- (2) f(xy, x + y + z) = 0
- (3) $f(x + y, x^2 + y^2 + z^2) = 0$
- (4) $f(xy, x^2 + y^2 + z^2) = 0$
- यदि Q, x का कोई फलन है, तो निम्न में से 90. कौनसा $\alpha > 0$ के लिए सही है ?

(1)
$$\frac{1}{D-\alpha}Q = e^{-\alpha x} \int e^{\alpha x} Q dx$$

(2)
$$\frac{1}{D+\alpha}Q = e^{\alpha x} \int e^{-\alpha x} Q dx$$

(3)
$$\frac{1}{D-\alpha}Q = e^{\alpha x} \int e^{-\alpha x} Q dx$$

- (4) $\frac{1}{D+\alpha}Q = e^{\alpha x} \int e^{\alpha x} Q dx$
- 91. यदि $\vec{r} = x\hat{i} + y\hat{i} + z\hat{k}$ और $r = |\vec{r}|$ तो $\operatorname{grad}\left(\frac{1}{r}\right)$ बराबर है :
 - (1) $-\frac{\vec{r}}{2}$ (2) $-\frac{2}{r^3}$
 - (3) $-\frac{\vec{r}}{r^3}$

88. The solution of the differential equation $x^2 \frac{d^2y}{dx^2} + 3x \frac{dy}{dx} + y = 0$ is

(1)
$$y = \frac{(c_1 + c_2 x)}{x}$$

(2)
$$y = \frac{(c_1 + c_2 \log x)}{x}$$

(3)
$$y = \frac{(c_1 + c_2 x)}{\log x}$$

(4)
$$y = x (c_1 + c_2 \log x)$$

- 89. Solution of partial differential equation $z(xp - yq) = y^2 - x^2$ is
 - (1) f(x + y + z) = 0
 - (2) f(xy, x + y + z) = 0
 - (3) $f(x + v, x^2 + v^2 + z^2) = 0$
 - (4) $f(xy, x^2 + y^2 + z^2) = 0$
- 90. If Q is any function of x, then which one of the following is correct for $\alpha > 0$?

(1)
$$\frac{1}{D-\alpha}Q = e^{-\alpha x} \int e^{\alpha x} Q dx$$

(2)
$$\frac{1}{D+\alpha}Q = e^{\alpha x} \int e^{-\alpha x} Q dx$$

(3)
$$\frac{1}{D-\alpha}Q = e^{\alpha x} \int e^{-\alpha x} Q dx$$

(4)
$$\frac{1}{D+\alpha}Q = e^{\alpha x} \int e^{\alpha x} Q dx$$

- 91. If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = |\vec{r}|$, then grad $\left(\frac{1}{r}\right)$ is equal to

 - $(1) -\frac{\vec{r}}{r^2} \qquad (2) -\frac{2}{r^3}$

- 92. यदि \overrightarrow{r} एक सदिश है, तब div \hat{r} बराबर है :
 - (1) $\frac{1}{r}$
- (2) $\frac{2}{r}$
- (3) $\frac{3}{r}$
- **(4)** 0
- 93. यदि $\vec{F} = (x + y + 1) \hat{i} + \hat{j} (x + y) \hat{k}$, तब
 - (1) $\nabla \times \overrightarrow{\mathbf{F}} = 0$
 - (2) $\nabla \cdot \vec{F} = 0$
 - $(3) \overrightarrow{F} \cdot (\nabla \times \overrightarrow{F}) = 0$
 - $(4) \quad |\overrightarrow{F}| = 0$
- 94. यदि S गोले $x^2 + y^2 + z^2 = 9$ का पृष्ठ है, तब $\iint \vec{r} \cdot \hat{n} \, dS \text{ बराबर है :}$
 - $(1)^{27\pi}$
- (2) 36 π
- (3) 54π
- (4) 108π
- 95. स्टोक प्रमेय का कथन है:
 - (1) $\int_{C} \vec{F} \cdot dr = \iint_{S} \hat{n} \cdot (\vec{\nabla} \times \vec{F}) dS$
 - (2) $\int_{C} (\overrightarrow{\nabla} \times \overrightarrow{F}) \cdot d\mathbf{r} = \iint_{S} \hat{\mathbf{n}} \cdot \overrightarrow{F} dS$
 - (3) $\int_{C} (\vec{\nabla} \cdot \vec{F}) dr = \iint_{S} \hat{n} \cdot \vec{F} dS$
 - (4) $\int_{C} \vec{F} \cdot dr = \iint_{S} (\vec{\nabla} \times \vec{F}) \cdot dS$
- 96. निर्देशांक अक्षों पर एक रेखा के प्रक्षेप क्रमश: 2,3 और 6 है । तो रेखा की लम्बाई है
 - (1) 5
- (2) $2\sqrt{5}$
- (3) $\frac{3}{7}$
- (4) 7

- 92. If \vec{r} is a vector, then div \hat{r} is equal to
 - (1) $\frac{1}{r}$
- (2) $\frac{2}{r}$
- (3) $\frac{3}{r}$
- (4) 0
- 93. If $\vec{F} = (x + y + 1) \hat{i} + \hat{j} (x + y) \hat{k}$, then
 - (1) $\nabla \times \vec{F} = 0$
 - (2) $\nabla \cdot \overrightarrow{\mathbf{F}} = 0$
 - (3) $\vec{F} \cdot (\nabla \times \vec{F}) = 0$
 - $(4) \quad \left| \overrightarrow{F} \right| = 0$
- 94. If S is the surface of the sphere $x^2 + y^2 + z^2 = 9$, then

$$\iint_{S} \vec{r} \cdot \hat{n} dS \text{ is equal to}$$

- (1) 27π
- (2) 36π
- (3) 54π
- (4) 108π
- 95. Statement of Stoke's theorem is

(1)
$$\int_{C} \vec{F} \cdot dr = \iint_{S} \hat{n} \cdot (\vec{\nabla} \times \vec{F}) dS$$

- (2) $\int_{C} (\vec{\nabla} \times \vec{F}) \cdot dr = \iint_{S} \hat{n} \cdot \vec{F} dS$
- (4) $\int_{C} \vec{F} \cdot dr = \iint_{S} (\vec{\nabla} \times \vec{F}) \cdot dS$
- 96. The projection of a line on the axes are 2, 3 and 6 respectively, then the length of line is
 - (1) 5
- (2) $2\sqrt{5}$

- (3) $\frac{3}{7}$
- (4) 7

- 97. बिन्दु (3, -1, 11) से रेखा $\frac{x}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ पर खींचे गये अभिलम्ब के पाद के निर्देशांक हैं :
 - (1) (2, 3, 4)
- (2) (2, 5, 7)
- (3) (2, 1, 1)
- (4) (1, 2, 3)
- यदि r_1 और r_2 त्रिज्या के दो गोले लाम्बिक प्रतिच्छेद करते हैं तो उभयनिष्ठ वृत्त की त्रिज्या है :
 - (1) $r_1 + r_2$
- (2) $r_1 r_2$
- (3) $\sqrt{r_1^2 + r_2^2}$ (4) $\frac{r_1 r_2}{\sqrt{r_1^2 + r_2^2}}$
- बिन्दु (1, 2, 3) का समतल 99. 2x + 6z - 3y + 35 = 0 के सापेक्ष प्रतिबिम्ब है :
 - (1) (-1, 5, -3) (2) (3, -1, 9)
 - (3) (-3, 8, -9)
- (4) (-3, 5, -3)
- 100. यदि समीकरण $ax^2 + by^2 + cz^2 + 2ux +$ 2vv + 2wz + d = 0 एक शंकु को निरूपित करता है, तब आवश्यक प्रतिबन्ध है :
 - (1) $u^2 + v^2 + w^2 = d$
 - (2) $\frac{u^2}{a} + \frac{v^2}{b} + \frac{w^2}{c} = d$
 - (3) $\frac{u^2}{a^2} + \frac{v^2}{b^2} + \frac{w^2}{c^2} = d$
 - (4) $\frac{u}{a} + \frac{v}{b} + \frac{w}{c} = d$
- 101. $z = \frac{P}{2} = \frac{Q}{3} = \frac{R}{4}$, $z = \frac{R}{4}$, $z = \frac{R}{4}$, $z = \frac{R}{4}$ दो बलों P और O का परिणामी है, तो R और P के मध्य कोण है :

 - (1) $\tan^{-1}\left(\frac{12}{11}\right)$ (2) $\tan^{-1}\left(\frac{3\sqrt{15}}{11}\right)$
 - (3) $\tan^{-1}\left(\frac{\sqrt{15}}{11}\right)$ (4) $\tan^{-1}\left(\frac{3}{11}\right)$

- Co-ordinates of the foot of the 97. perpendicular from the point (3, -1, 11)to the line $\frac{x}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ is
 - (1) (2,3,4)
- (2) (2, 5, 7)
- (3) (2, 1, 1)
- (4) (1, 2, 3)
- If two spheres of radii r₁ and r₂ 98. intersect orthogonally, then radius of common circle is
 - (1) $r_1 + r_2$
- (2) $r_1 r_2$
- (3) $\sqrt{r_1^2 + r_2^2}$ (4) $\frac{r_1 r_2}{\sqrt{r_1^2 + r_2^2}}$
- 99. The image of the point (1, 2, 3) with respect to the plane

$$2x + 6z - 3y + 35 = 0$$
 is

- (1) (-1, 5, -3) (2) (3, -1, 9)
- (3) (-3, 8, -9)
- (4) (-3, 5, -3)
- 100. If equation $ax^2 + by^2 + cz^2 + 2ux + 2vy$ + 2wz + d = 0 represents a cone, then the required condition is
 - (1) $u^2 + v^2 + w^2 = d$
 - (2) $\frac{u^2}{a} + \frac{v^2}{b} + \frac{w^2}{c} = d$
 - (3) $\frac{u^2}{a^2} + \frac{v^2}{b^2} + \frac{w^2}{a^2} = d$
 - (4) $\frac{\mathbf{u}}{\mathbf{a}} + \frac{\mathbf{v}}{\mathbf{b}} + \frac{\mathbf{w}}{\mathbf{c}} = \mathbf{d}$
- 101. If $\frac{P}{2} = \frac{Q}{3} = \frac{R}{4}$, where R is the resultant of two forces P and Q acting at a point, then the angle between R and P is

 - (1) $\tan^{-1}\left(\frac{12}{11}\right)$ (2) $\tan^{-1}\left(\frac{3\sqrt{15}}{11}\right)$
 - (3) $\tan^{-1}\left(\frac{\sqrt{15}}{11}\right)$ (4) $\tan^{-1}\left(\frac{3}{11}\right)$

- 102. यदि किसी दिये गये बल निकाय के बिन्दुओं (2, 0), (0, 2) और (2, 2) के सापेक्ष आधूर्ण क्रमश: 3, 4 तथा 10 इकाई हैं, तब परिणामी बल का परिमाण है :

 - (1) $\sqrt{85}$ (2) $\sqrt{\frac{85}{2}}$
 - (3) $\sqrt{\frac{85}{3}}$ (4) $\frac{1}{2}\sqrt{85}$
- 103. यदि μ एक रूक्ष पृष्ठ का घर्षण गुणांक है तो निम्न में से कौनसा सत्य है?
 - (1) $-1 \le \mu \le 1$ (2) $-\infty < \mu < \infty$
 - (3) $0 < \mu \le 1$
- (4) $0 \le \mu \le 1$
- 104. निम्न में से कौनसा बल कल्पित कार्य की समीकरण में छोड़ा नहीं जा सकता ?
 - (1) अवितान्य डोरी का तनाव
 - (2) दण्ड में प्रणोद
 - (3) दो पिण्डों के सम्पर्क बिन्द पर उनके मध्य परस्पर प्रतिक्रिया
 - (4) किसी चिकने पृष्ठ की प्रतिक्रिया
- 105. साधारण कैटनरी के लिये सत्य कथन है
 - (1) v = c sec w नैज समीकरण है।
 - (2) y = c tan ψ प्राचल समीकरण है।
 - (3) $y = c \cosh\left(\frac{x}{c}\right)$ कार्तीय समीकरण है ।
 - (4) उपरोक्त सभी
- 106. यदि किसी कण के अरीय तथा अनुप्रस्थ वेग सर्वदा परस्पर समानुपाती हो तो कण का पथ होता
 - (1) परवलय
 - (2) वृत्त
 - (3) समकोणिक सर्पिल
 - (4) अतिपरवलय

- 102. If the moments of a given system of forces about three points (2, 0), (0, 2) and (2, 2) are 3, 4 and 10 units respectively, then the magnitude of the resultant force is

 - (1) $\sqrt{85}$ (2) $\sqrt{\frac{85}{2}}$
 - (3) $\sqrt{\frac{85}{3}}$ (4) $\frac{1}{2}\sqrt{85}$
- 103. If μ is the coefficient of friction of a rough surface, then which of the following is true?
 - (1) $-1 \le \mu \le 1$
- (2) $-\infty < \mu < \infty$
- (3) $0 < \mu \le 1$
- (4) $0 \le \mu \le 1$
- 104. Which of the following forces should not be omitted in equation of virtual work?
 - (1) The tension of an inelastic string.
 - (2) The thrust of a rod.
 - (3) Mutual reaction between two bodies at their point of contact.
 - (4) The reaction of any smooth surface.
- 105. The true statement for the common catenary is
 - (1) $y = c \sec \psi$ is intrinsic equation.
 - (2) $y = c \tan \psi$ is parametric equation.
 - (3) $y = c \cosh\left(\frac{x}{c}\right)$ is cartesian equation.
 - (4) all of these
- 106. If the radial and tranversal velocities of a particle are always proportional to each other, then the path of the particle is
 - (1) Parabola
 - (2) Circle
 - (3) Equiangular spiral
 - (4) Hyperbola

- 107. यदि एक कण सरल रेखा के सापेक्ष $s = \frac{t^3}{3} - 5t^2 + 9t + 17$ के अनुसार गति करता है. तो इसका वेग ऋणात्मक होगा, जबकि
 - (1) 1 < t < 9
 - (2) 1 > t > 9
 - (3) $1 < t \le 9$
 - (4) $1 \le t < 9$
- 108. स्वाभाविक लम्बाई । की एक हल्की प्रत्यास्य डोरी जिसका प्रत्यास्थ मापांक λ है. एक सिरे से लटकी है और दूसरे सिरे पर यदि m द्रव्यमान का कण बांध दिया जाए तो कण की गति का समीकरण है :

(1)
$$\frac{d^2x}{dt^2} = \frac{-m\lambda}{l}x$$
 (2) $\frac{d^2x}{dt^2} = -\frac{\lambda}{ml}x$

(3)
$$\frac{d^2x}{dt^2} = \frac{-l\lambda}{m}x$$
 (4)
$$\frac{d^2x}{dt^2} = \frac{-ml}{\lambda}x$$

- 109. एक कण क्षैतिज से α कोण वाली दिशा में प्रक्षेपित किया जाता है, इसका क्षैतिज परास R है । यदि यह बिन्दु (p,q) से गुजरता है तो $\tan \alpha$ बराबर है
 - $(1) \frac{p}{q} \cdot \frac{R}{R-p} \qquad (2) \frac{q}{p} \cdot \frac{R}{R-p}$

 - (3) $\frac{p}{q} \cdot \frac{R}{R-q}$ (4) $\frac{q}{p} \cdot \frac{R}{R-q}$
- 110. एक तोप से h मीटर ऊँची किसी पहाड़ी पर शत्रू के स्थान का उन्नतांश β है । इस पर गोले से वार करने के लिये प्रक्षेप्य का प्रारम्भिक प्रक्षेप वेग u, किस शर्त द्वारा संतुष्ट होता है ?
 - (1) $u < \sqrt{gh(1 + \csc \beta)}$
 - (2) $u \le \sqrt{gh(1 \csc \beta)}$
 - (3) $u \ge \sqrt{gh(1 + \csc \beta)}$
 - (4) $u > \sqrt{gh(1 \csc \beta)}$

- 107. If a particle moves along a straight line according to $s = \frac{t^3}{3} - 5t^2 + 9t + 17$, then its velocity will be negative when
 - (1) 1 < t < 9
 - (2) 1 > t > 9
 - (3) $1 < t \le 9$
 - (4) $1 \le t < 9$
- 108. A light elastic string of natural length l and modulus of elasticity λ is hung by one end and to the other if a particle of mass m is tied, then the equation of motion of the particle is

(1)
$$\frac{d^2x}{dt^2} = \frac{-m\lambda}{l}x$$
 (2) $\frac{d^2x}{dt^2} = -\frac{\lambda'}{ml}x$

(2)
$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\frac{\lambda}{\mathrm{m}l} x$$

(3)
$$\frac{d^2x}{dt^2} = \frac{-l\lambda}{m}x$$
 (4)
$$\frac{d^2x}{dt^2} = \frac{-ml}{\lambda}x$$

(4)
$$\frac{d^2x}{dt^2} = \frac{-ml}{\lambda}$$

- 109. A particle is projected in a direction making an angle α with the horizon, its horizontal range is R. If it passes through the point (p, q), then $\tan \alpha$ is equal to

 - $(1) \quad \frac{p}{q} \cdot \frac{R}{R-p} \qquad (2) \quad \frac{q}{p} \cdot \frac{R}{R-p}$

 - (3) $\frac{p}{q} \cdot \frac{R}{R-q}$ (4) $\frac{q}{p} \cdot \frac{R}{R-q}$
- 110. The angular elevation of an enemy's position on a hill h metre high from a cannon is B. In order to shell it, the initial velocity u of the projectile must satisfy the condition
 - (1) $u < \sqrt{gh(1 + \csc \beta)}$
 - (2) $u \le \sqrt{gh(1 \csc \beta)}$
 - (3) $u \ge \sqrt{gh(1 + \csc \beta)}$
 - (4) $u > \sqrt{gh(1 \csc \beta)}$

- 111. यदि V एक n विमा का सदिश समब्टि है, तो निम्न में कौनसा एक सत्य नहीं है ?
 - (1) V के (n + 1) सदिशों की प्रत्येक सूची रैखिक स्वतन्त्र है ।
 - (2) V के (n 1) सदिशों की कोई भी सूची V को विस्तारित नहीं कर सकती ।
 - (3) (n-1) रैखिक स्वतन्त्र सिंदशों का कोई भी सम्च्यय V का आधारी है।
 - (4) n सदिशों का कोई भी समुच्चय, जो V को विस्तारित करता है, एक आधारी है।
- X, तब सही कथन है
 - (1) A एक विवृत समृच्चय है।
 - (2) A संवृत्त है यदि और केवल यदि $\overline{A} = A$
 - (3) $\overline{A \cup B} \neq \overline{A} \cup \overline{B}$
 - (4) $\overline{A \cap B} \neq \overline{A} \cap \overline{B}$
- 113. 2F₁(1, 1; 2, -x) बराबर है :
 - (1) $\log(1+x)$ (2) $\log(1-x)$
- - (3) $\frac{1}{r} \log(1+x)$ (4) $\log\left(\frac{1+x}{1-x}\right)$
- 114. यदि $E_{i}^{}\left(t\right)=\int rac{e^{-u}}{u}\,du,$ तब $E_{i}^{}(t)$ का लाप्लास रूपांतर है
 - (1) $\frac{1}{n}$
- (2) log p
- (3) $\frac{1}{p} \log p$ (4) $\frac{1}{p} \log (p+1)$
- 115. निम्न में से कौनसा एक सैरेट-फ्रेनेट सूत्र नहीं है ?

 - (1) $\frac{d\hat{t}}{ds} = \kappa \hat{n}$ (2) $\frac{d\hat{b}}{ds} = \Upsilon \hat{n}$
 - (3) $\frac{d\hat{n}}{ds} = \Upsilon \hat{b} \kappa \hat{t}$ (4) $\frac{d\hat{n}}{ds} = \kappa \hat{b} \Upsilon \hat{t}$

- 111. If V be a vector space of dimension n, then which one of the following is not true?
 - (1) Every list of (n + 1) vectors of V is linearly independent.
 - (2) No list of (n-1) vectors of V can span V.
 - (3) Any set of (n-1) linearly independent vectors is a basis of
 - Any set of n vectors that spans V, is a basis.
- 112. If (X, d) be a metric space and let $A, B \in X$, then true statement is
 - (1) A is a open set.
 - (2) A is closed if and only if A = A.
 - (3) $\overrightarrow{A} \cup \overrightarrow{B} \neq \overrightarrow{A} \cup \overrightarrow{B}$
 - (4) $\overline{A \cap B} \neq \overline{A} \cap \overline{B}$
- 113. $2F_1(1, 1; 2, -x)$ is equal to
 - (1) $\log(1+x)$
- (2) $\log(1-x)$
- (3) $\frac{1}{x} \log(1+x)$ (4) $\log\left(\frac{1+x}{1-x}\right)$
- 114. If $E_i(t) = \int \frac{e^{-u}}{u} du$, then Laplace transform of E_i(t) is
 - (1) $\frac{1}{n}$
- (2) log p
- (3) $\frac{1}{p} \log p$ (4) $\frac{1}{p} \log (p+1)$
- 115. Which one of the following is not Serret-Frenet formula?
 - (1) $\frac{d\hat{t}}{ds} = \kappa \hat{n}$ (2) $\frac{db}{ds} = \Upsilon \hat{n}$
 - (3) $\frac{d\hat{n}}{ds} = \Upsilon \hat{b} \kappa \hat{t}$ (4) $\frac{d\hat{n}}{ds} = \kappa \hat{b} \Upsilon \hat{t}$

- 116. कोई द्वितीय क्रम का सहपरिवर्ती प्रदिश अद्वितीय रूप से व्यक्त किया जा सकता है :
 - (1) द्वितीय क्रम के दो सममित प्रदिशों के योग के रूप में
 - (2) द्वितीय क्रम के दो प्रतिसमिमत प्रदिशों के योग के रूप में
 - (3) द्वितीय क्रम के एक सममित प्रदिश और एक प्रतिसम्मित प्रदिश के योग के रूप में
 - (4) द्वितीय क्रम के दो समीमत प्रदिश के अन्तर के रूप में
- **117.** निम्न सारणी से y(1.2) का मान है :

x	1.0	1.1	1.3
y(x)	0	3.7	27.9

- (1) 13.2
- (2) 15.8
- (3) 13.0
- (4) 13.7

- 119. m पंक्तियों और n स्तम्भों वाली परिवहन समस्या में अन-अपभ्रष्ट आधारी सुसंगत हल के लिये कुल रिक्त कोष्ठिकाएँ होनी चाहिये
 - (1) (m+1)(n-1)(2) m+n-1
 - (3) (m-1)(n-1) (4) (m-1)(n+1)
- 120. λ के किस मान के लिये निम्न भुगतान आव्यूह वाला खेल दढत: निर्धारित होगा :

 $A\begin{bmatrix} \lambda & 6 & 2 \\ -1 & \lambda & -7 \\ -2 & 4 & \lambda \end{bmatrix}$

- (1) $-1 \le \lambda \le 2$
- (3) $-1 \le \lambda \le 4$ (4) $-7 \le \lambda \le 6$

- 116. Any covariant tensor of second order can be expressed uniquely as the
 - (1) Sum of two symmetric tensors of order two.
 - (2) Sum of two skew-symmetric tensors of order two.
 - (3) Sum of a symmetric tensor and a skew-symmetric tensor of order two.
 - (4) Difference of two symmetric tensors of order two.
- 117. From the following table the value of y(1.2) is

х	1.0	1.1	1.3
y(x)	0	3.7	27.9
			<u> </u>

- (1) 13.2
- (2) 15.8
- (3) 13.0
- (4) 13.7
- 118. $\sqrt{\sum_{\mathbf{Z}} x^3}$ is equal to
 - (1) $x^3 + y^3 + z^3$ (2) $x^2 + y^2 + z^2$ (3) x + y + z (4) x y z
- **119.** For non-degenerate transportation problem with m rows and n columns, total empty cells should be
 - (1) (m+1)(n-1)(2) m+n-1
 - (3) (m-1)(n-1) (4) (m-1)(n+1)
- 120. For what value of λ , the game with following pay-off matrix is strictly determinable:

 $A \left[\begin{array}{ccc} \lambda & 6 & 2 \\ -1 & \lambda & -7 \\ -2 & 4 & \lambda \end{array} \right]$

- $(1) -1 \le \lambda \le 2$
- (2) $-7 \le \lambda \le 2$
- (3) $-1 \le \lambda \le 4$
- $(4) -7 \le \lambda \le 6$

- 121. शिक्षा मनोविज्ञान शिक्षक की सहायता करती है
 - (1) विकास की विशेषताओं को समझने में
 - (2) वैयक्तिक विभिन्नताओं को समझने में
 - (3) बालकों की समस्याओं को समझने में
 - (4) उपरोक्त सभी
- 122. किसके अनुसार शिक्षा मनोविज्ञान, शिक्षा का विज्ञान है ?
 - (1) **स्किनर**
 - (2) पील
 - (3) पिल्सबर्ग
 - (4) ब्रूनर
- 123. अनुदैर्घ्य उपागम में जिन बालकों का पर्यवेक्षण किया जाता है, वे होते हैं
 - (1) नए
 - (2) विभिन्न
 - (3) निश्चित
 - (4) उपरोक्त में से कोई नहीं
- 124. एक बालक अधिक सीखता है, यदि उसे
 - (1) व्याख्यान विधि से पढ़ाया जाए
 - (2) पाठ्य पुस्तक से पढ़ाया जाए
 - (3) कम्प्यूटर से पढ़ाया जाए
 - (4) क्रिया विधि से पढ़ाया जाए
- 125. अधिगम के लिए क्या आवश्यक है ?
 - (1) स्वानुभव
 - (2) स्व-चिन्तन
 - (3) स्व-क्रिया
 - (4) उपरोक्त सभी
- 126. निम्न में से कौनसा शिक्षण सूत्र नहीं है ?
 - (1) ज्ञात से अज्ञात
 - (2) विशिष्ट से सामान्य
 - (3) अंश से पूर्ण
 - (4) सरल से जटिल

- 121. Educational psychology helps the teacher
 - (1) to understand developmental characteristics.
 - (2) to understand individual differences.
 - (3) to understand problems of children.
 - (4) all of the above
- **122.** According to whom, educational psychology is the science of education?
 - (1) Skinner
 - (2) Peel
 - (3) Pillsburg
 - (4) Bruner
- In longitudinal approach children who are observed, are
 - (1) New
 - (2) Different
 - (3) Same
 - (4) None of the above
- 124. A child learns more if he is
 - (1) taught through lecture method.
 - (2) taught through textbook.
 - (3) taught through computer.
 - (4) taught through activity method.
- 125. What is essential for learning?
 - (1) Self-experience
 - (2) Self-thinking
 - (3) Self-activity
 - (4) All of the above
- **126.** Which of the following is not the maxims of teaching?
 - (1) Known to unknown
 - (2) Specific to general
 - (3) Part to whole
 - (4) Simple to complex

- 127. निम्न में से कौनसा विकास का सिद्धान्त नहीं है ?
 - (1) निश्चित प्रतिमान का सिद्धान्त
 - (2) विशिष्ट से सामान्य अनुक्रियाओं की ओर बढ़ने का सिद्धान्त
 - (3) समन्वय का सिद्धान्त
 - (4) निरन्तरता का सिद्धान्त
- 128. विकास का मनोसामाजिक अवस्था दृष्टिकोण प्रतिपादित किया गया
 - (1) बण्डूरा
 - (2) फ्रायड
 - (3) कोहलबर्ग
 - (4) एरिक्सन
- 129. निम्नांकित में से कौनसी अवस्था संक्रमण अविध कहलाती है ?
 - (1) बाल्यावस्था
 - (2) किशोरावस्था
 - (3) प्रौद्धावस्था
 - (4) शैशवावस्था
- 130. व्यवहारवाद का पिता कौन है ?
 - (I) **हल**
 - (2) जे. वाटसन
 - (3) फ्रायड
 - (4) इवान पावलॉव
- 131. निर्मितिवादी अधिगम के पक्षधर हैं
 - (1) **स्किनर**
 - (2) लिव वाइगोत्सकी
 - (3) कोहलर
 - **(4)** मैसलो
- 132. अर्थपूर्ण शाब्दिक अधिगम किसके द्वारा समझाया गया था
 - (1) राबर्ट गैग्ने
 - (2) जीन पियाजे
 - (3) जेरॉम ब्रूनर

(4) डेविड आसुबेल

- 127. Which of the following is not a principle of development?
 - (1) Principle of uniformity of pattern
 - (2) Principle of proceeding from specific to general response
 - (3) Principle of integration
 - (4) Principle of continuity
- **128.** The view of psycho-social stage of development was proposed by
 - (1) Bandura
 - (2) Freud
 - (3) Kohlberg
 - (4) Erickson
- 129. Which of the following stage is called the period of transition?
 - (1) Childhood
 - (2) Adolescence
 - (3) Adulthood
 - (4) Infancy
- 130. Who is the father of behaviourism?
 - (1) Hull
 - (2) J. Watson
 - (3) Freud
 - (4) Ivan Pavlov
- 131. Constructivist learning is advocated by
 - (1) Skinner
 - (2) Lev Vygotsky
 - (3) Kohler
 - (4) Maslow
- 132. The meaningful verbal learning was explained by
 - (1) Robert Gagne
 - (2) Jean Piaget
 - (3) Jerom Bruner
 - (4) David Ausubel

- 133. डेनियल गोलमैन सम्बन्धित हैं
 - (1) मानसिक स्वास्थ्य से
 - (2) संवेगात्मक बुद्धि से
 - (3) सृजनात्मकता से
 - (4) व्यक्तित्व से
- 134. प्रभावी शिक्षक वह है, जो
 - (1) कक्षा पर नियंत्रण रख सकता है।
 - (2) अधिक सूचना दे सकता है।
 - (3) विद्यार्थियों को अधिगम हेतु अभिप्रेरित कर सकता है।
 - (4) आबंटित कार्य का ध्यानपूर्वक संशोधन करता है।
- 135. निम्न में से कौन सा युग्म सही है ?
 - (1) अधिगम के प्रकार _ कोहलर
 - (2) अनुभवजन्य अधिगम कार्ल रोजर्स
 - (3) सामाजिक अधिगम गैग्ने
 - (4) अन्तर्दृष्टिपूर्ण अधिगम बण्ड्रा
- 136. प्रतिरक्षा प्रक्रिया है
 - (1) चेतन व्यवहार
 - (2) ऱ्यायसंगत एवं तार्किक
 - (3) प्रत्यक्ष विधि
 - (4) व्यक्तित्व का रक्षा कवच
- 137. शिक्षण का पृच्छा प्रशिक्षण प्रतिमान विकसित किया
 - (1) ब्रूनर ने
 - (2) रिचर्ड सक्मैन
 - (3) डोनाल्ड ऑलीवर
 - (4) जॉन डीवी
- 138. सहयोगात्मक अधिगम का प्रत्यय किसने दिया था ?
 - (1) जॉनसन एवं स्मिध
 - (2) फेल्डर
 - (3) हेलर
 - (4) फ़िचनर एवं डेविस

- 133. Daniel Goleman is associated with
 - (1) Mental Health
 - (2) Emotional Intelligence
 - (3) Creativity
 - (4) Personality
- 134. An effective teacher is one who can
 - (1) Control the class
 - (2) Give more information
 - (3) Motivate students to learn
 - (4) Correct the assignment carefully
- **135.** Which of the following matching is correct?
 - (1) Types of learning Kohler
 - (2) Experiential learning Carl Rogers
 - (3) Social learning Gagne
 - (4) Insightful learning Bandura
- 136. Defence mechanism is
 - (1) Conscious behaviour
 - (2) Rational and logical
 - (3) Direct method
 - (4) A protection shield to one's personality
- **137.** The inquiry training model of teaching was developed by
 - (1) Bruner
 - (2) Richard Suchman
 - (3) Donald Oliver
 - (4) John Dewey
- 138. The concept of co-operative learning was introduced by

- (1) Johnson and Smith
- (2) Felder
- (3) Heller
- (4) Feichtner and Davis

- 139. निर्मितिवाद के सम्बन्ध में कौनसा कथन गलत है ?
 - (1) अधिगम एक सिक्रय प्रक्रिया है ।
 - (2) अधिगम विश्व का वैयक्तिक विवेचन है ।
 - (3) शिक्षक, विद्यार्थियों को सूचनाएँ प्रसारित करते हैं।
 - (4) शिक्षक, विद्यार्थियों द्वारा स्वंय के ज्ञान निर्माण में सहायता करते हैं ।
- 140. समायोजन की समस्या के कारक हैं
 - (1) तनांव
 - (2) दुश्चिन्ता
 - (3) कुण्टा
 - (4) उपरोक्त सभी
- 141. निर्मितिवाद के अनुसार, शिक्षक की भूमिका होती है
 - (1) सरलीकृत करने वाला
 - (2) प्रशासक
 - (3) टोली नायक
 - (4) निर्देशक
- 142. श्रव्य-दृश्य सामग्री
 - (1) अवबोध में सुविधा प्रदान करती है ।
 - (2) अधिगमकर्ता के प्रत्यक्षीकरण को विकसित करने में सहायता करती है ।
 - (3) अधिगमकर्ता की धारण शक्ति को बढ़ाती है।
 - (4) उपरोक्त सभी
- 143. निम्नलिखित में से कौनसा सूचना प्रक्रिया शिक्षण प्रतिमान का उदाहरण है ?
 - (1) सामाजिक अन्त:क्रिया प्रतिमान
 - (2) निष्पत्ति प्रत्यय प्रतिमान
 - (3) प्रयोगशाला शिक्षण प्रतिमान
 - (4) समूह अन्वेषण प्रतिमान

- 139. Which statement is wrong with regards to constructivism?
 - (1) Learning is an active process.
 - (2) Learning is a personal interpretation of world.
 - (3) Teachers disseminate information to students.
 - (4) Teachers help students to construct their own knowledge.
- 140. Factors causing adjustment problem are
 - (1) Stress
 - (2) Anxiety
 - (3) Frustration
 - (4) All of the above
- 141. According to constructivism, the role of a teacher is as a
 - (1) Facilitator
 - (2) Administrator
 - (3) Team leader
 - (4) Director
- 142. Audio-visual aids
 - (1) Facilitates in understanding
 - (2) Helps in developing perception of the learner
 - (3) Increases the retention of the learner
 - (4) All of the above
- 143. Which of the following is the example of information processing teaching model?
 - (1) Social interaction model
 - (2) Concept attainment model
 - (3) Laboratory teaching model
 - (4) Group investigation model

	(1) एक-तरफा (2) ताव्र		(1) One sided (2) Intense
	(3) अन्त:क्रियात्मक (4) धीमा		(3) Interactive (4) Slow
145.	सम्प्रेषण का कार्य है	145.	Function of communication is
	(1) अभिप्रेरणा		(1) Motivation
	(2) सूचना का आदान-प्रदान		(2) Sharing of information
	(3) शिक्षा एवं प्रशिक्षण		(3) Education and training
	(4) उपरोक्त सभी		(4) All of the above
146.	कम्प्यूटर सहायक अनुदेशन कहलाता है	146.	Computer aided instruction is called as
	(1) इलेक्ट्रॉनिक ब्रेन		(1) electronic brain
	(2) इलेक्ट्रॉनिक मेमोरी		(2) electronic memory
	(3) इलेक्ट्रॉनिक बुक		(3) electronic book
	(4) इलेक्ट्रॉनिक जर्नल		(4) electronic journal
147.	Wi-Fi से तात्पर्य है	147.	Wi-Fi stands for
	(1) वायरलेस फैक्ट्री		(1) Wireless Factory
	(2) वायरलेस फिडेलिटी		(2) Wireless Fidelity
	(3) वैब फैक्ट्री		(3) Web Factory
	(4) वैब फिडेलिटी		(4) Wed Fidelity
148.	सूचना सम्प्रेषण तकनीकी	148.	Information communication technologies
	(1) विद्यार्थियों में अभिप्रेरणा बढ़ाती है ।		(1) raise students' motivation
	(2) विद्यार्थियों की निष्पत्ति बढ़ाती है ।		(2) raise students' achievement
	(3) उच्च स्तरीय चिन्तन को प्रोत्साहित करती है ।		(3) promote higher order thinking
	(4) उपरोक्त सभी ।		(4) all of the above
149.	का प्रयोग नेटवर्क को बाह्य आक्रमण	149.	is used to protect network
	से बचाने में होता है ।		from outside attacks.
	(1) डी.एन.एस. (2) फायरवॉल		(1) DNS (2) Firewall
	(3) एक्स्ट्रानेट (4) फॉरट्रेस		(3) Extranet (4) Fortress
150.	ऑप्टिकल संग्रहण डिवाइस है	150.	Optical storage device is
	(1) फ्लैश मेमोरी कार्ड		(1) Flash memory cards
	(2) यू.एस.बी. ड्राइव		(2) USB drive
	(3) डी.वी.डी.		(3) DVD
	(4) हार्ड डिस्क		(4) Hard Disk
06	3	1	

144. Classroom teaching should be

144. कक्षा-कक्ष शिक्षण होना चाहिए

रफ कार्य के लिए स्थान / SPACE FOR ROUGH WORK

