- In a container, the temperature of hot food falls from 90°C to 82°C in 1 minute. According to Newton's law of cooling, how much time will be taken when its temperature falls from $70^{\circ}C$ to $66^{\circ}C$?
 - **(1)** 52.2 s

(2)46.8 s

41.6 s **(3)**

36.2 s (4)

किसी बर्तन में भरे तप्त भोजन का ताप 1 मिनट में 90°C से 82°C हो जाता है जब कि कक्ष-ताप $20^{\circ}C$ हैं । $70^{\circ}C$ से $66^{\circ}C$ तक ताप के गिरने से न्यूटन के शीतलन नियमानुसार कितना समय लगेगा ?

(1) 52.2 s

46.8 s (2)

(3) 41.6 s

- (4) 36.2 s
- As per Laplace modification the velocity of sound in gases is given as

(1)
$$\vartheta = \sqrt{\frac{P}{\rho}}$$

(1)
$$\vartheta = \sqrt{\frac{P}{\rho}}$$
 (2) $\vartheta = \sqrt{\frac{P}{\gamma \rho}}$

(3)
$$\vartheta = \sqrt{\frac{\gamma P}{\rho}}$$

(3)
$$\vartheta = \sqrt{\frac{\gamma P}{\rho}}$$
 (4) $\vartheta = \frac{1}{\gamma} \sqrt{\frac{P}{\rho}}$ (2.1)

Where P, ρ and γ have their usual meaning.

लाप्लास संशोधन के अनुसार गैसों में ध्वनि की चाल का सूत्र है

(1)
$$\vartheta = \sqrt{\frac{P}{\rho}}$$

(1)
$$\vartheta = \sqrt{\frac{P}{\rho}}$$
 (2) $\vartheta = \sqrt{\frac{P}{\gamma \rho}}$

(3)
$$\vartheta = \sqrt{\frac{\gamma P}{\rho}}$$

(3)
$$\vartheta = \sqrt{\frac{\gamma P}{\rho}}$$
 (4) $\vartheta = \frac{1}{\gamma} \sqrt{\frac{P}{\rho}}$

यहाँ Р, ρ व γ के तात्पर्य सामान्यतः काम आने वाले है ।

	•	
	• .	
3	A rocket is moving with a spee	ed of 200 ms ⁻¹ torwards a target. While
	moving it is emitting waves of 200	00 Hz frequency. Part of this sound reaches
	the target and comes back as refle detected by the rocket will be:	ected from there. The frequency of the echo
	(1) 5080 Hz	(2) 7240 Hz
	(3) 8160 Hz	(4) 9460 <i>Hz</i>
	कोई रॉकेट 200 ms ⁻¹ की चाल से कि	केसी लक्ष्य की ओर गतिमान है । गति करते समय
		र्जित करता है । इस ध्विन का कुछ भाग लक्ष्य पर तिकेट की ओर परावर्तित हो जाता है । रॉकेट द्वारा
	(1) 5080 Hz	(2) 7240 Hz
	(3) 8160 Hz	(4) 9460 Hz
4		prism for yellow and red light colours are the dispersive power of the prism is 0.020 let colour light rays will be:
	(1) 1.540	(2) 1.450
	(3) 1.555	(4) 1.600
:	-	ा की प्रकाश किरणों के अपवर्तनांक क्रमशः 1.550 पण क्षमता 0.020 है तो प्रकाश की बैंगनी किरणों
	(1) 1.540	(2) 1.450
	(3) 1.555	(4) 1.600
	(chet	978.
5	For a compound microscope, the	e objective focal length f_o is 1.0 cm , the
	eye piece focal length f_e is 2.0 cmagnification is:	cm and the length of the tube is 10 cm. Its
	(1) 20	(2) 50
	(3) 125	(4) 250
	किसी संयुक्त सूक्ष्मदर्शी के लिए f_o =	$=1.0~cm$ का .अभिदृश्यक, $f_e=2.0~cm$ की
	मेत्रिका तथा ट्यूब लम्बाई 10 cm है ।	
	(1) 20	(2) 50
	(3) 125	(4) 250

ı	3
	J

6	Electrical force is acting between two charges kept in vacuum. If a copper plate is placed between the changes, the force now is:
	(1) More (2) Less
	(3) Remains unchanged (4) Zero
	निर्वात में रखे दो आवेशों के मध्य विद्युतिय बल लग रहा है । दोनों आवेशों के मध्य ताम्बे की पट्टी रख दी जाती है । अब विद्युतिय बल है :
•	(1) अधिक (2) कम
	(3) अपवर्तित (4) शून्य
-	
7	A positive charge equivalent to that of a proton is uniformly distributed on
•	a ring of diameter $1 \stackrel{\circ}{A}$. The potential at the centre of the ring is :
	(2) 20.8 V
	(1) 20.0 7
	(3) $14.4 V$ (4) $13.6 V$
	एक प्रोटोन के आवेश के तुल्य धनात्मक आवेश $1 \mathring{A}$ व्यास के एक छल्ले पर समान रूप से फेला है । छल्ले के केन्द्र पर विभव है : (1) $28.8 V$ (2) $20.8 V$
*. *	(A) (-12.6 I/ - 17.6
	(3) $14.4 V$ (4) $(4)^{13.6 V}$
. 8	The radii of a spherical condenser are $0.5 m$ and $0.6 m$. If the empty space is completely filled by a medium of dielectric constant 6, then capacity of the condenser will be $\frac{1}{1000}$
	(1) $2 \times 10^{-9} F$ (2) $3 \times 10^{-9} F$ 21
	(3) $1.5 \times 10^{-8} F$ (4) $2.0 \times 10^{-8} F_{3}$
	एक गोलीय संधारित्र की त्रिज्याएं 0.5 m व 0.6 m है । गोले के खाली स्थान को परावैद्युतांक वाले माध्यम से पूर्ण रूप से भर दिया जाता है । संधारित्र की धारिता है
	(1) $2 \times 10^{-9} F$ (2) $3 \times 10^{-9} F$
	(3) $1.5 \times 10^{-8} F$ (4) $2.0 \times 10^{-8} F$

	9	Worl	k done i	n increasin	g the pote	ntial diff	erence	of a capaci	tor from 15 V
					-,			·	ice from 30 V
		to 6	0 <i>V</i> will	l be :					
		(1)	8 W			(2)	4 W		
		(3)	2 W			(4)	W		
		एक र	संधारित्र व	का विभवान्त	र 15 <i>V</i> से	30 V व	ढाने के	लिए W कार्य	किया गया हैं।
				•					या कार्य होगा :
		(1)	8 W		•	(2)	4 W		
		(3)	2 W			(4)	W		
	10	Six I	ead acid	l secondary	cells eacl	h with e	.m.f. 2	V and inte	rnal resistance
	p e	0.01	5Ω are	joined to	form a bat	tery. Thi	is batte	ry is used t	o send current
		throu	igh a re	sistance of	8.5 Ω cor	mected i	n serie	s. The curre	nt drawn from
		the t	attery a	nd its term	inal voltag				
		(1)	1.3 A	11.9 V		(2)	1.4 <i>A</i>	12.0 V	
		(3)	1.3 A	12.0 V	a e	(4)	1.4 A	11.9 V	
							_		V तथा आंतरिक
									बेटरी का उपयोग
					_				लिए किया जाता
				ली गई धारा गाउँ	<i>र</i> ख्न ्डलका द				
		(1)	1.3 A	11.9 V		(2)		12.0 V	,
		(3)	1.3 A	12.0 V	•	(4)	1.4 <i>A</i>	11.9 V	(1) (1) • 4 (1) 1 (1)
	11	o di	5, 1	0.17	(a.	Little file	 O		
	11						ŕ		connected to a length of the
									in the balance
			tion?		, m, then	***************************************		no onango	in the buldinge
		(1)	Reduce	ed by 0.5 n	n	(2)	Rema	in same	
		(3)	Increas	sed by 0.7	m	(4)	Increa	sed by 1.2	m
		2 V	विद्युत वा	हक बल तथा	नगण्य आन्त	रिक प्रतिर	ोध की ए	क बेटरी 10 n	n लम्बे विभवमापी
		_							ात होता है । यदि
		तार व	भी लम्बाई	2 <i>m</i> बढा	दी जाय तो र	प्रन्तुलन रि	थति में	क्या परिवर्तन	होगा ?
		(1)	0.5 m	घट जायेगा		(2)	वही र	हेगा	
>		(3)	0.7 <i>m</i>	बढ़ जायेगा		(4)	1.2 m	बढ़ जायेगा	
.001	06_D]				5			[Contd

12 The value of Bohr magneton is:

(1)
$$9.27 \times 10^{-21} Am^2$$

(2)
$$9.27 \times 10^{-24} Am^2$$

(3)
$$^{\circ}4.63 \times 10^{-21} Am^2$$

(4)
$$4.63 \times 10^{-24} Am^2$$

बोर मैग्नेटॉन का मान होता है :

(1)
$$9.27 \times 10^{-21} Am^2$$

(2)
$$9.27 \times 10^{-24} Am^2$$

(3)
$$4.63 \times 10^{-21} Am^2$$

(4)
$$4.63 \times 10^{-24} Am^2$$

13 When the number of turns in the moving coil galvanometer is doubled then :.

- (1) Current sensitivity is doubled but voltage sensitivity remains unchanged.
- (2) Current sensitivity is unchanged but voltage sensitivity is doubled.
- (3) Current sensitivity is doubled and the voltage sensitivity is also doubled.
- (4) Both current sensitivity and a voltage sensitivity remain unchanged. किसी चल कुण्डली गैल्वेनोमीटर में फेरों की संख्या दुगुनी करने पर :
- (1) धारा सुग्राहिता दुगुनी हो जाती है पर वोल्टता सुग्राहिता अपरिवर्तित रहती है ।
- (2) धारा सुग्राहिता अपरिवर्तित रहती है पर वोल्टता सुग्राहिता दुगुनी हो जाती है।
- (3) धारा सुग्राहिता दुगुनी हो जाती है और वोल्टता सुग्राहिता भी दुगुनी हो जाती है ।
- (4) धारा सुग्राहिता व वोल्टता सुग्राहिता दोनों अपरिवर्तित रहती है ।

In the ferromagnetic material iron, a domain exists in the form of a cube of side $10^{-4}m$. At. wt. of iron is 55 g/mole, density 7.9 g/cm³ and each iron atom has a dipole moment equal to $9.27 \times 10^{-24} Am^2$. The value of magnetisation is:

(1)
$$4.0 \times 10^4 \ Am^{-1}$$

$$(2)^{1.5}6.0 \times 10^5 \ Am^{71}$$

(3)
$$8.0 \times 10^5 \ Am^{-1}$$

(4)
$$2.0 \times 10^6 \ Am^{\frac{12}{14}}$$

लोह चुम्बकीय पदार्थ लोहे में कोई डोमेन $10^{-4}~m$ भुजा वाले घन के रूप में है । लोहे का परमाण्विक द्रव्यमान 55~g/mole, घनत्व $7.9~g/cm^3$ है तथा प्रत्येक लौह परमाणु का चुम्बकीय द्विध्रुव आघूर्ण $9.27\times 10^{-24}~Am^2$ है । डोमेन में चुम्बकन का मान है :

(1)
$$4.0 \times 10^4 \ Am^{-1}$$

(2)
$$6.0 \times 10^5 \ Am^{-1}$$

(3)
$$8.0 \times 10^5 Am^{-1}$$

(4)
$$2.0 \times 10^6 \ Am^{-1}$$

06_D]

6

[Contd...

15	In two coils placed near ear	ch other, when current in one of the coils of	
		s then, $250 V$ electro motive force is ind	
	the other coil. The mutual		
	$(1) 20 \ mH$	(2) 30 mH	
· .	(3) 40 mH	(4) 50 mH	
· ·	किन्हीं समीपवर्ती दो कुण्डलियों मे	से एक कुण्डली में जब धारा 10 ⁻³ s में 5 A से	। घटक
*		नी में $250V$ विद्युत वाहक बल प्रेरित होता है ।	
	(1) 20 mH	(2) 30 mH	
	(3) 40 mH	(4) 50 mH	9 9
16	In a resonant circuit, $L=10$	mH , $C = 100 \mu F$ and $R = 0.2 \Omega$. The v	alue o
	Q of the circuit is:		•. • •
	(1) 10	(2) 20	
	(3) 50	(4) 100	
	एक अनुनादी परिपथ में $L=10$ का मान है :	mH , $C=100$ μ F व $R=0.2$ Ω है। परिपश	ग्रमें <i>Q</i>
	(1) 10	(2) 20	Art III
	(3) 50	(4) 100	
	in the second se		
17	In a circuit $V = 200 \sin(314)$	t) and $I = \sin \left(314 t + \frac{\pi}{3} \right)$. The average	power
	consumed in the circuit is :		
	(1) 200 W	(2) 100 W	
	(3) 50 W	(4) 25 W	
	एक परिपथ में V = 200 sin (3	14 t) तथा $I = \sin\left(314 t + \frac{\pi}{3}\right)$ है। परि	.पथ में
	व्ययित औसत शक्ति है :		
	(1) 200 W	(2) 100 W	
	(3) 50 W	(4) 25 W	
-£ 06_1	D]	7 [Co	ntd
	the state of the s		

	When the axes of two polariser plates are parallel the intensity of transmitted light is maximum. By what angle should the axis of one plate be rotated so that intensity of the transmitted light reduces to half?
--	---

(1)	30°
(1 /	~ ~ ~

(2) 45°

(4) 90°

जब दो ध्रुवक प्लेटों के अक्ष परस्पर समान्तर हैं तब उनके पारगमित प्रकाश की तीव्रता अधिकतम होती है। किसी प्लेट के अक्ष को कितना घुमाया जाय कि पारगमित प्रकाश की तीव्रता आधी रह जाय ?

$$(1)$$
 30°

(2) 45

$$(3)$$
 60°

(4) 90

According to photoelectric effect, the slope of the graph between stopping potential and the frequency of the light is:

$$(1) \quad \frac{2h}{e}$$

(2) $\frac{h}{2e}$

(3)
$$\frac{h}{e}$$

(4) $\frac{\phi o}{e}$

प्रकाश विद्युत प्रभाव के अनुसार निरोधी विभव व प्रकाश की आवृत्ति के बीच ग्राफ का ढलान होता है :

$$(1) \quad \frac{2h}{e}$$

(2) $\frac{h}{2e}$

(3)
$$\frac{h}{e}$$

 $(4) \quad \frac{\phi o}{e}$

ЯC

In the fission of $^{239}_{94}Pu$, on the average 180 MeV energy is released per fission. How much energy would be released if all the atoms of 1 kg of pure $^{239}_{94}Pu$ undergo fission?

(1)
$$9.0 \times 10^{26} MeV$$

(2)
$$4.5 \times 10^{26} MeV \frac{16.5}{14.5}$$

(3)
$$3.0 \times 10^{26} MeV$$

(4)
$$4.5 \times 10^{25} MeV^{-3}$$

 $\frac{239}{94}Pu$ के विखंडन से प्रति विखंडन विमुक्त औसत ऊर्जा 180~MeV है । यदि 1~kg शुद्ध $\frac{239}{94}Pu$ के सभी परमाणु विखंडित हों तो कितनी ऊर्जा विमुक्त होगी ?

(1)
$$9.0 \times 10^{26} MeV$$

(2)
$$4.5 \times 10^{26} MeV$$

(3)
$$3.0 \times 10^{26} MeV$$

(4)
$$4.5 \times 10^{25} MeV$$

06_D]

8

[Contd.:33

In pure Si crystal, there are 5×10^{28} atoms m^{-3} . This is doped with pentavalent As at 1 ppm concentration. Given that $n_i = 1.5 \times 10^{16}$ m⁻³, determine the number of electron and holes.

(1)
$$4.5 \times 10^8 \ m^{-3}$$

(2)
$$4.5 \times 10^9 \ m^{-3}$$

(3)
$$3.6 \times 10^8 \ m^{-3}$$

(4)
$$3.6 \times 10^9 \ m^{-3}$$

किसी शुद्ध Si क्रिस्टल में 5×10^{28} परमाणु m^{-3} है । इसे पंच संयोजी As से 1 ppm सांद्रता पर अपिश्रित किया जाता है । दिया हुआ $n_i=1.5\times 10^{16}~m^{-3}$, इलेक्टॉनों व होलों की संख्या परिकलित कीजिए ।

(1)
$$4.5 \times 10^8 \ m^{-3}$$

(2)
$$4.5 \times 10^9 \ m^{-3}$$

(3)
$$3.6 \times 10^8 \ m^{-3}$$

(4)
$$3.6 \times 10^9 \ m^{-3}$$

22 For which gate in the truth table given below applies?

	Input		Output
1	A	В	· Y
	0	0	1
	0	1	0
I	1	0	0
	1	1	0

(1) OR Gate

(2) NOT Gate

(3) NOR Gate

(4) NAND Gate

नीचें दी गई सत्यमान सारणी किस द्वार के लिए हैं ?

निदं	निवेश		
A	B	Y	
0	0	1	
0	1	0	
1	0	0	
1	·1	·0	

(1) OR गेट

(2) NOT गेट

(3) NOR गेट

(4) NAND गेट

06_D]

9

[Contd...

- (1) The speed of wave propagation is $\frac{W}{R}$
- (2) Velocity C for all waves is equal to $\frac{1}{\sqrt{\mu_o \in_o}}$
- (3) In electromagnetic wave, the electric and magnetic fields are related as $|B_o| = \frac{|E_o|}{C^2}$
- (4) The energy density of electric field \overrightarrow{E} is $\frac{1}{2} \in_o E^2$ and that of magnetic field \overrightarrow{B} is $\frac{1}{2} \frac{B^2}{\mu_o}$

निर्वात में विद्युत चुम्बकीय तरंगों के विचरण के लिए निम्न में से असत्य कथन बताइये :

- (1) तरंग गमन की चाल $\frac{W}{R}$ है
- (2) सभी तरंगों के लिए वेग $C = \frac{1}{\sqrt{\mu_o \in o}}$
- (3) विद्युत चुम्बकीय तरंग में विद्युत व चुंबकीय क्षेत्रों का संबन्ध है $\left|B_o\right| = \frac{\left|E_o\right|}{C^2}$
- (4) विद्युत क्षेत्र \overrightarrow{E} का ऊर्जा घनत्व $\frac{1}{2} \in_o E^2$ तथा चुम्बकीय क्षेत्र \overrightarrow{B} से संबंधित चुम्बकीय ऊर्जा घनत्व $\frac{1}{2} \frac{B^2}{\mu_o}$ होता है

24 The wavelength of the waves used in microwave oven to heat food is about

(1). 1 m

(2) 0.1 m

(3) = 0.01 m

(4) 0.001 m

भोजन को गर्म करने के लिए माइक्रोवेच ऑवन में प्रयुक्त तरंगों का तरंगदैर्घ्य होता है लगभग

(1) I m

(2) 0.1 m

(3) 0.01 m

(4) 0.001 m

06_D]

10

[Contd....

		· .
25	The	plane of oscillation of a pendulum rotates due to coriolis force:
	(1)	Clockwise in Northern hemi-sphere and anticlockwise in Southern hemi-sphere
	(2)	Anticlockwise in Northern hemi-sphere and clockwise in Southern hemi-sphere
	(3)	Clockwise in both Northern and Southern hemi-sphere
	(4)	Anticlockwise in both Northern and Southern hemi-sphere
	कोरि	ऑलिस बल के कारण लोकल के दोलन का तल घूमता है:
	(1)	उत्तरी गोलार्ध में दक्षिणावर्त व दक्षिणी गोलार्ध में वामावर्त
	(2)	उत्तरी गोलार्ध में वामावर्त व दक्षिणी गोलार्ध में दक्षिणावर्त
	(3)	दोनों उत्तरी य दक्षिणी गोलार्थों में दक्षिणावर्त
	(4)	दोनों उत्तरी व दक्षिणी योलार्थों में वामावर्त
_	٠.	
*•		

26 At what velocity is the momentum of a particle of rest mass m_o equal to $m_o c$?

(1)
$$c$$
 (2) $\frac{c}{2}$ (3) $\frac{c}{\sqrt{2}}$ (4) $\frac{2}{3}c$

किस वेग पर m_o विराम द्रव्यमान वाले कण का संवेग $m_o c$ के बराबर होता है ?

(1)
$$c$$
 (2) $\frac{1}{2}$ (3) $\frac{c^{3/2}}{\sqrt{2}}$ (4) $\frac{2}{3}c$

Two particles with masses 2 kg and 3 kg are moving, relative to an observer, with velocities of 10 ms^{-1} along the X-axis and 8 ms^{-1} at an angle of 120° with the X-axis respectively. What is the velocity of their CM?

(1)
$$1.6 \, \hat{u}_x + 4.17 \, \hat{u}_y$$
 ms^{-1} (2) $1.2 \, \hat{u}_x + 4.17 \, \hat{u}_y$ ms^{-1} (3) $2.4 \, \hat{u}_x + 1.65 \, \hat{u}_y$ ms^{-1} (4) $1.6 \, \hat{u}_x - 4.17 \, \hat{u}_y$ ms^{-1} 2 kg व 3 kg द्रव्यमान के दो कण, एक दृष्टा के सापेक्ष चल रहे है जिसमें क्रमशः वेग है $10 \, ms^{-1} \, X$ -अक्ष की दिशा में तथा $8 \, ms^{-1} \, X$ -अक्ष से 120° कोण बनाते हुए। इनके द्रव्यमान केन्द्र का वेग क्या है ?

(1)
$$1.6 \hat{u}_x + 4.17 \hat{u}_y \quad ms^{-1}$$
 (2) $1.2 \hat{u}_x + 4.17 \hat{u}_y \quad ms^{-1}$ (3) $2.4 \hat{u}_x + 1.65 \hat{u}_y \quad ms^{-1}$ (4) $1.6 \hat{u}_x - 4.17 \hat{u}_y \quad ms^{-1}$

- What will be the moment of inertia of a HCl molecule along the axis passing through the centre of mass and perpendicular to the bond length? Given that masses of H⁺ and Cl⁻ ions are 1 and 35 au respectively and interatomic separation is 10^{-10} m. 1 au = 1.66×10^{-27} kg.
 - (1) $1.66 \times 10^{-47} \ kg m^2$
 - (2) $1.66 \times 10^{-37} \ kg \ m^2$
 - (3) $1.613 \times 10^{-47} \ kg \ m^2$
 - (4) $1.613 \times 10^{-37} \ kg \ m^2$

HCl अणु का द्रव्यमान केन्द्र से गुजरने वाले व बन्ध लम्बाई के लम्बवत् अक्ष के सापेक्ष जडत्व आधूर्ण क्या होगा? दिया हुआ H⁺ तथा Cl⁻ आयनों का द्रव्यमान क्रमशः 1 एवं $35~\mathrm{au}$ एवं अन्तरापरमाणिक दूरी $10^{-10}~m$ है। $1~\mathrm{au}=1.66\times10^{-27}~kg$.

- (1) $1.66 \times 10^{-47} \ kg \, m^2$
- (2) $1.66 \times 10^{-37} \ kg \, m^2$
- (3) $1.613 \times 10^{-47} \ kg m^2$
- (4) $1.613 \times 10^{-37} \ kg m^2$
- For the bending of a $rod \delta$ (fixed on two ends and loaded in the mid point), the correct formula is: W^c is weight, I the length, b width and d the thickness, Y is the Young's modulus of the rod.

$$(1) \qquad \delta = \frac{W l^3}{b d^3 Y}$$

$$(2) \quad \delta = \frac{Wl^2}{bd^2Y}$$

$$(3) \qquad \delta = \frac{W \, l^3}{2bd^3 Y}$$

$$(4) \quad \delta = \frac{W l^3}{4bd^3 Y}$$

किसी दण्ड के बंकन δ (जब सिरों के पास आधारित है तथा मध्य बिन्दु पर भार लगा है) का सही सूत्र है : W -भार, I-लम्बाई, b-चौड़ाई व d मोटाई और Y दण्ड का युंग प्रत्यास्थ गुणांक है

$$(1) \qquad \delta = \frac{W I^3}{b d^3 Y}$$

(2)
$$\delta = \frac{W l^2}{b d^2 Y}$$

(3)
$$\delta = \frac{Wl^3}{2bd^3Y}$$

$$(4) \quad \delta = \frac{W l^3}{4hd^3 V}$$

- In an experiment similar to Young's two slits are separated by 0.8 mm and 30 illuminated by monochromatic light of $\lambda = 5.9 \times 10^{-7} m$. The interference fringes are observed at a distance of 0.50 m from the slits. The separation between successive bright or dark fringes is :
 - 0.037 mm (1)

(2)0.37 mm

(3) 0.185 mm

(4)0.0185 mm

यंग के दि-स्लिट प्रयोग के जैसे ही एक प्रयोग में स्लिटों की दूरी 0.8 mm है तथा ये $\lambda = 5.9 \times 10^{-7} m$ की एक-वर्णीय प्रकाश से प्रदीप्त होती है। स्लिटों से 0.50 m दूरी पर व्यतिकरण फ्रिन्जों को देखा जाता है। उत्तरोत्तर दीप्त या अदीप्त फ्रिन्जों के बीच दूरी होती है :

(1)0.037 mm

(2)0.37 mm

(3) 0.185 mm

- (4)0.0185 mm
- A monochromatic light beam of wavelength λ is incident on a thin film of 31 thickness a and refractive index n. The condition for maximum transmission and minimum reflection is:

(1)
$$a n \cos \theta_r = n\lambda$$

(1)
$$a n \cos \theta_r = n\lambda$$
 (2) $2a n \cos \theta_r = \frac{1}{2}(2N-1)\lambda$

(3)
$$2a n \cos \theta_r = N\lambda$$

(3)
$$2a n \cos \theta_r = N\lambda$$
 (4) $a n \cos \theta_r = \frac{1}{2}(2N-1)\lambda$

Where N is integer, θ_r is angle of refraction.

λ तरंगदैर्घ्य की एकवर्णीय प्रकाशपुंज एक पतली परत (फिल्म) पर आपितत है। फिल्म की मोटाई m तथा इसका अपरावर्तनांक n है। सर्वाधिक पारगमन व न्यूनतम परावर्तन की परिस्थिति है :

(1)
$$a n \cos \theta_r = n\lambda$$

(2)
$$2\alpha n \cos \theta_r = \frac{1}{2} (2N - 1)\lambda$$

(3)
$$2a n \cos \theta_r = N\lambda$$

(4)
$$a n \cos \theta_r = \frac{1}{2} (2N-1)\lambda$$

जहाँ N एक पूर्ण संख्या है तथा θ_r अपवर्तन कोण है ।

- Assume that the visible spectrum goes from $3.90 \times 10^{-7} m$, up to $7.70 \times 10^{-7} m$. The angular separation of the whole visible spectrum for the first order for a grating with 20000 lines and a length of 4 cm will be about:
 - (1) 4°

(2) 6

(3) 8°

(4) 10°

यह मानिये की दृश्य स्पैक्ट्रम 3.90×10^{-7} m से 7.70×10^{-7} m तक जाता है। एक ग्रेटिंग, जिसकी लम्बाई 4 cm तथा रेखाओं की संख्या 20000 हैं, से प्रथम कोटि में सम्पूर्ण दृश्य स्पैक्ट्रम का कोणीय विस्तार है :

(1) 4°

(2) 6°

(3) 8°

- (4) 10°
- 33 Find the incorrect statement:
 - (1) In He-Ne laser, the laser light is due to $5s \rightarrow 3p$ transitions in He.
 - (2) The mixture of He and Ne gases is kept at $\sim 10^2 \ Pa$.
 - (3) The distance between the end mirrors is a multiple of the laser wavelength.
 - (4) The precision with which cavity is constructed is such that $\Delta L < 10^{-7} L$ where L is the length of the cavity.

असत्य कथन खोजिये :

- (1) He-Ne लेसर में लेसर प्रकाश He में $5s \rightarrow 3p$ संक्रमण के कारण आता है।
- (2) He-Ne गैसों का मिश्रण $\sim 10^2 Pa$ पर रखा जाता है ।
- (3) अन्त के शीशों के बीच की दूरी लेसर तरंग दैर्घ्य का गुणक होता है ।
- (4) जिस परिशुद्धता से कोटर बनाई जाती है वह ऐसी है की $\Delta L < 10^{-7} L$ होता है, जहाँ L कोटर की लम्बाई है ।

A damped oscillator is undergoing forced oscillations. The frequencies for which amplitude and velocity will be maximum, are respectively:

(1)
$$W_o$$
; W_o (2) $\left(W_o^2 - \frac{\lambda^2}{m^2}\right)^{1/2}$; W_o

(3)
$$W_o$$
; $\left(W_o - \frac{\lambda^2}{2m^2}\right)^{1/2}$ (4) $\left(W_o^2 - \frac{\lambda^2}{2m^2}\right)^{1/2}$; W_o

Here W_o is its natural (undamped) angular frequency and λ is the damping constant, m is the mass of the oscillator.

एक अवमंदित दोलक प्रणोदित दोलन कर रहा है। वे आवृत्तियाँ जिनके लिए इसका आयाम व वेग सर्वाधिक होंगे क्रमशः हैं :

(1)
$$W_o$$
; W_o (2) $\left(W_o^2 - \frac{\lambda^2}{m^2}\right)^{1/2}$; W_o

(3)
$$W_o$$
; $\left(W_o - \frac{\lambda^2}{2m^2}\right)^{1/2}$ (4) $\left(W_o^2 - \frac{\lambda^2}{2m^2}\right)^{1/2}$; W_o

यहाँ W_o इसकी स्वाभाविक (बिना अवमंदन के) कोणीय आवृत्ति है, λ विमंदन स्थिरांक है व m दोलक का द्रव्यमान है।

37 The number of normal modes of vibration for O_2 and CO_2 molecules at normal temperature are respectively:

$$(3)$$
 0, 3

सामान्य ताप पर O_2 तथा CO_2 अणुओं के कम्पनों की सामान्य विधाओं की संख्या क्रमशः है :

$$(3)$$
 0, 3

38		the bulk modulopater in m/s		$.20 \times 1$	$10^{10} N/m^2$ then velocity of sound
		$\sqrt{2} \times 10^3$		(2)	2×10^3
	(3)	$\frac{1}{\sqrt{2}} \times 10^3$		(4)	$2\sqrt{2} \times 10^3$
	यदि	जल का आयतन	प्रत्यास्था गुणांक 0.:	20 × 10	$0^{10} \; N/m^2$ हो तो जल में ध्वनि का वेग
		s में होगा:			
	(1)	$\sqrt{2} \times 10^3$. •	(2)	2×10^3
	(3)	$\frac{1}{\sqrt{2}} \times 10^3$	·	(4)	2×10^3 $2\sqrt{2} \times 10^3$
39	vect	for k is given	as $\omega = \alpha k^2$. The dium is equal to	ne prod	n angular frequency ω and wave duct of group velocity and phase
	(1)	αω		(2)	2αω
	(3)	ω/ <i>a</i>		(4)	$\frac{\omega}{\sqrt{a}}$
					तथा तरंग सदिश k के बीच संबन्ध है
	ω=	ak^2 । इस माध	यम के लिए समूह व	वेगव व	कला वेग का गुणनफल होता है :
	(1)	αω		(2)	2αω
	(3)	ω/ <i>a</i>	•	(4)	$\frac{\omega}{\sqrt{a}}$
40	Two	metal spheres eir electrostati	of radii 10 <i>cm</i> and c energies will be	d 20 <i>сп</i> е теѕре	m are charged to 20 V . The ratio ectively:
	(1)	1:1	•		1:2
	(3)	1:4	•		2:1
	धातु व उनकी	ह दो गोले जिनकी स्थिर वैद्युत ऊज	ित्रिज्याएं 10 cm व र्गाओं का अनुपात क्र	ं 20 <i>cm</i> नशः हो	n है 20 V पर आवेशित किये गये हैं। ोगाः
	(1)	1:1	3		1:2
	(3)	1:4			2:1
06_D)		17		[Contd

- The electrical susceptibility of a dielectric material consists of two terms arising due to induced effect and the orientation effect. Their temperature dependences are respectively as:
 - (1) $T; (T)^o$

(2) $(T)^o$; T

(3) $(T)^o$; $\frac{1}{T}$

(4) $T : T^2$

किसी परावैद्युत पदार्थ की विद्युतीय सुग्राहिता में दो पद है जो प्रेरक प्रभाव व अभिविन्यासी प्रभाव के कारण है। इनकी ताप पर निर्भरता क्रमशः है :

(1) T; $(T)^o$

(2) $(T)^{o}$; T

(3) $(T)^o$; $\frac{1}{T}$

- (4) T; T^2
- In a one-dimensional device, the charge density is given by $\rho_{\nu} = \rho_{o} \frac{x}{a}$. If $\overrightarrow{E} = 0$ at x = 0 and V = 0 at x = a, then the values of V and \overrightarrow{E} are respectively:
 - (1) $\frac{\rho_o}{6 \in a} \left(a^3 + x^3 \right), \quad -\frac{\rho_o x^2}{2a \in a_x^2} a_x^2$
 - (2) $\frac{\rho_o}{6 \in a} \left(a^3 x^3 \right); \frac{\rho_o x^2}{2a \in a_x}$
 - (3) $\frac{\rho_o}{4\epsilon} \left(a^2 x^2\right), \frac{\rho_o x}{2\epsilon} a_x^{\hat{}}$
 - (4) $\frac{\rho_o}{4 \in \left(a^2 + x^2\right)}, -\frac{\rho_o x}{2 \in a_x^2}$

किसी एक-विमीय युक्ति में आवेश घनत्व के लिए सूत्र है $\rho_{\nu}=\rho_{o}\,\frac{x}{a}$ ा यदि x=0 पर

 $\overrightarrow{E} = 0$ तथा x = a पर V = 0 हो तो V तथा \overrightarrow{E} है क्रमशः

$$(1) \quad \frac{\rho_o}{6 \in a} \left(a^3 + x^3 \right); \quad -\frac{\rho_o x^2}{2a \in a_x^2} a_x^{\hat{}}$$

(2)
$$\frac{\rho_o}{6 \in a} \left(a^3 - x^3 \right); \frac{\rho_o x^2}{2a \in a_x^{\wedge}}$$

(3)
$$\frac{\rho_o}{4\in} \left(a^2 - x^2\right); \; \frac{\rho_o x}{2\in} \, a_x^{\hat{}}$$

$$(4) \quad \frac{\rho_o}{4 \in} \left(a^2 + x^2 \right); \quad -\frac{\rho_o x}{2 \in} a_x^{\wedge}$$

- 43 The electric field \vec{E} of a plane electromagnetic wave is $\vec{E} = \hat{k}$ a $\cos(\omega t 2x + 3y)$. The wave is propagating along:
 - (1). \hat{k}

(2) $-2\hat{i} + 3\hat{j} + \hat{k}$

(3) $-2\hat{i} + 3\hat{j}$

 $(4) \quad 2\hat{i} - 3\hat{j} \quad .$

किसी समतल विद्युत—चुम्बकीय तरंग का विद्युत क्षेत्र \overrightarrow{E} के लिए

 $\overrightarrow{E} = \hat{k}$ a $\cos(\omega t - 2x + 3y)$ है। यह तरंग जिस दिशा में विचरण कर रही है वह है :

(1) \hat{k}

(2) $-2\hat{i} + 3\hat{j} + \hat{k}$

(3) $-2\hat{i} + 3\hat{j}$

- (4) $2\hat{i} 3\hat{j}$
- 44 In colour televisions, the electron beam is accelerated to an energy of about :
 - (1) $200 \ eV$

(2) 2,000 eV

(3) $20,000 \ eV$

(4) 200,000 eV

रंगीन टेलीविजनों में इलेक्ट्रॉन पुंज को लगभग जिस ऊर्जा तक त्वरित करते है वह है :

(1) 200 eV

(2) 2,000 eV

(3) 20,000 eV

- (4) 200,000 eV
- According to Maxwell-Boltzmann distribution, if the average speed of the molecules of a gas is $361 \, m/s$, then the most probable speed will be
 - (1) $320 ms^{-1}$

(2) $407 ms^{-1}$

(3) $442 ms^{-1}$

(4) $295 ms^{-1}$

मेक्सवैल-बोल्टजमान वितरण के अनुसार यदि किसी गैस के अणुओं की औसत चाल $361 \, m/s$ है तो अधिकतम प्रसंभाव्य चाल होगी :

(1) $\cdot 320 \ ms^{-1}$

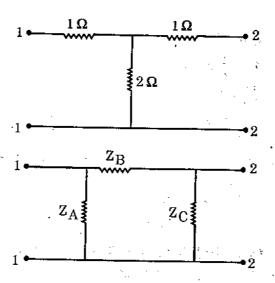
(2) $407 ms^{-1}$

(3) 442 ms^{-1}

(4) 295 ms^{-1}

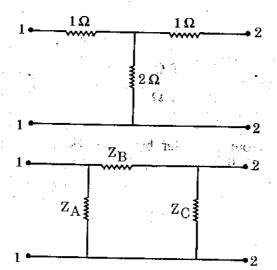
- The boiling point of water at 1 atm pressure is $100^{\circ}C$. The volume of 1 g of steam is 1683 cm^3 . If latent heat of vapourisation of steam is 536 cal/g, the boiling point will increase by $1^{\circ}C$ if the pressure increased by:
 - (1) 0.0084 atm
 - (2) 0.0355 atm
 - (3) 0.132 atm
 - (4) 3.55 atm

1~atm दाब पर पानी का क्वथनांक $100^{\circ}C$ है। 1~g भाप का आयतन $1683~cm^3$ होता है। यदि भाप की गुप्तऊष्मा 536~cal/g है तो क्वथनांक में $1^{\circ}C$ की वृद्धि के लिए दाब में वृद्धि होनी चाहिये :

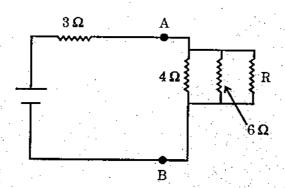

- (1) 0.0084 atm
- (2) 0.0355 atm
- (3) 0.132 atm
- (4) 3.55 atm
- In adiabatic demagnetisation of a paramagnetic substance at temperature T, the applied magnetic field B is reduced to zero. The fall in temperature will be approximately proportional to:
 - (1) $\frac{B}{\sqrt{T}}$
 - (2) $\frac{B^2}{T}$
 - (3) $\frac{B}{T}$
 - $(4) \quad \frac{B}{T^2}$

ताप T पर किसी अनुचुम्बकीय पदार्थ के रुद्धोष्म विचुम्बकन में आरोपित चुम्बकीय क्षेत्र B को घटाकर शून्य किया जाता है। ताप में कमी लगभग निम्न के अनुक्रमानुपाती है :

- (1) $\frac{B}{\sqrt{T}}$
- (2) $\frac{B^2}{T}$
- (3) $\frac{B}{T}$
- $(4) \quad \frac{B}{T^2}$


48	Cho	Choose the incorrect statement:						
	(1)	He does not have a triple point.						
	(2)	At 2.19 K, density of He is maximum.						
	(3)	At λ -point, specific heat of He is maximum.						
	(4)	At 2.19 K, viscosity of He is maximum.						
	गलत	कथन का चयन कीजिये :						
	(1)	He का त्रिक बिन्दु नहीं होता है ।						
	(2)	2.19 K पर He का घनत्व अधिकतम होता है ।						
	(3)	λ-बिन्दु पर He की विशिष्ट ऊष्मा अधिकतम होती है ।						
	(4)	2.19 K पर He की श्यानता अधिकतम होती है ।						
49		cosmic background radiation spectrum can be fitted very will with the tion:						
•	(1)	Fermi-Dirac distribution at 2.7 K						
	(2)	Maxwell-Boltzmann distribution at 270 K						
1	(3)	Planck's distribution at 2.7 K						
	(4)	Planck's distribution at 270 K						
	ब्रह्मांड	विय पृष्ठभूमि विकिरण स्पैक्ट्रम का जिस फलन से सही समंजन कर सकते है, वह है:						
	(1)	2.7 K का फर्मीडिराक वितरण						
	(2)	270 K का मैक्सवेल-बोल्टजमान वितरण						
	(3)	2.7 K का प्लांक वितरण						
	(4)	270 K का प्लांक वितरण						
•	÷							
50	At v	ery low temperatures, the heat capacity of solids varies with temperature						
	(1)	_ -						
	(3)	T^2 (4) T^{-1}						
	अत्यन	त निम्न ताप पर ठोसों की ऊष्मा-धारिता ताप के साथ परिवर्तित होती है :						
	(1)	T^4 के अनुसार (2) T^3 के अनुसार						
	(2)	$T^2 \stackrel{?}{\Rightarrow} \text{ argur}$ (4) $T^{-1} \stackrel{?}{\Rightarrow} \text{ argur}$						

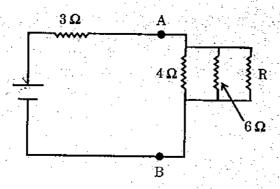
For the T-circuit shown below, the equivalent π -network will have Z_A , Z_B and Z_C respectively as:


- (1) 2.5 Ω , 5 Ω , 2.5 Ω
- (2) 2.5 Ω , 5 Ω , 5 Ω
- (3) 5Ω , 2.5Ω , 5Ω
- (4) 5Ω , 5Ω , 2.5Ω

नीचे दिये गये T-परिपथ के लिए — तुल्य π जालक में प्रतिरोध Z_A , Z_B व Z_C का मान क्रमशः है :

- (1) $2.5 \Omega, 5 \Omega, 2.5 \Omega$
- (2) . 2.5 Ω , 5 Ω , 5 Ω
- (3) 5 Ω , 2.5 Ω , 5 Ω
- (4) 5Ω , 5Ω , 2.5Ω

52 A D.C. power source of 3 Ω internal resistance is connected to a network of resistance (as shown). For maximum power transfer, what should be the value of R?


(1) 12Ω

(2) 8 Ω

(3) 3Ω

(4) 2 Ω

 3Ω आंतरिक प्रतिरोध के D.C. स्रोत को एक प्रतिरोधों के जाल से जोड़ा है (चित्रानुसार)। सर्वाधिक शक्ति के स्थानान्तरण के लिए R का मान क्या होगा?

(I) 12 Ω

(2) 8 Ω

(3) 3Ω

(4) 2 Ω

For the full-wave rectifier without any filter but with resistive load, the ripple factor and the lowest A.C. frequency respectively are:

(1) 0.48; 2ω

(2) 0.48; ω

(3) 1.21; 2ω

(4) 1.21; ω

Given that ω is the angular frequency of the A.C. source.

एक पूर्ण-तरंग दिष्टकारी, बिना फिल्टर पर प्रतिरोधी लोड के लिए उर्मिका गुणांक व न्यूनतम प्रत्यावर्ती धारा की आवृत्ति क्रमशः है :

(1) 0.48; 2ω

(2) 0.48; ω

(3) 1.21; 2ω

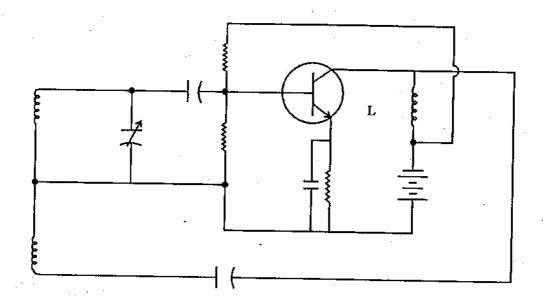
(4) 1.21; ω

दिया हुआ कि ω Α.С. स्रोत की कोणीय आवृत्ति है।

- In terms of h-parameters, the current gain of a CE amplifier is h_{fe} . Its voltage gain with a load R_L will be nearly equal to :
 - (1) $h_{fe} R_L$
 - $(2) \quad -h_{fe} \ R_L$
 - $(3) \quad \frac{h_{fe}}{h_{ie}} \quad R_L$
 - $(4) \quad -\frac{h_{fe}}{h_{ie}} R_L$

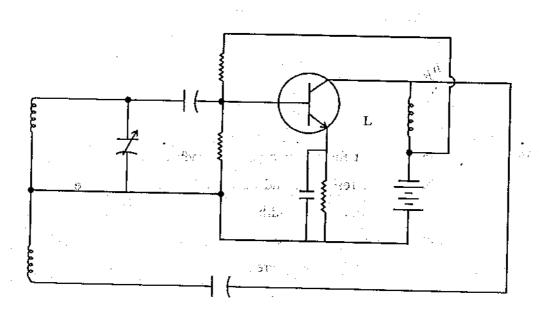
h-प्राचलों के रूप में एक CE प्रवर्धक का धारा लाभ h_{fe} है। इसका लोड R_L के लिए वोल्टता लाभ का मान लगभग होगा :

- (1) $h_{fe} R_L$
- (2) $-h_{fe} R_L$
- $(3) \quad \frac{h_{fe}}{h_{ie}} \ R_L$
- $(4) \frac{h_{fe}}{h_{ie}} R_L$


55 The correct statement for negative voltage feedback is that it :

- (1) Increases input resistance and decreases output impedance.
- (2) Decreases gain and bandwidth.
- (3) Increases stability and noise....
- (4) Increases bandwidth and decreases stability.

ऋणात्मक वोल्टता पुनर्निवेश के लिए सत्य कथन है कि यह :


- (1) निवेश प्रतिरोध बढ़ाता है और निर्गम प्रतिरोध घटाता है ।
- (2) लब्धि तथा बैण्ड चौड़ाई घटाता है ।
- (3) स्थायित्व तथा रव में वृद्धि करता है।
- (4) बैण्ड चौड़ाई बढ़ाता है और स्थायित्व घटाता है।

56 The circuit shown below represents:

- (1) Hartley oscillator
- (2) Collpitt oscillator
- (3) RC coupled oscillator
- (4) PNP amplifier

चित्र में दर्शाया परिपथ है एक :

(1) हार्टले दोलक

- (2) कॉलिपट दोलक
- (3) RC युग्मित दोलक
- (4) PNP आवर्धक

57 For a JFET, $I_{DSS} = 12 \text{ mA}$,

 $V_{GS(off)} = -4 V$. What is drain current for $V_{GS} = -1 V$?

(1) $2.5 \, mA$

(2) 3.6 mA

(3) $6.75 \, mA$

(4) 36 mA

किसी JFET के लिए दिया हुआ है कि $I_{DSS} = 12 \, mA$,

 $V_{GS(off)} = -4V$ । $V_{GS} = -1V$ के लिए निर्गम धारा क्या होगी?

(1) $2.5 \, mA$

(2) 3.6 mA

(3) 6.75 mA

(4) 36 mA

58 If an electron is to be confined in a region of width a, its energy must be about:

- $(1) \quad \frac{h^2}{32 \pi^2 ma^2}$
- $(2) \quad \frac{h^2}{2 \pi^2 ma^2}$
- $(3) \quad \frac{h^2}{ma^2}$
- $(4) \quad \frac{4\pi^2h^2}{ma^2}$

यदि एक इलेक्ट्रॉन को α चौड़ाई के प्रदेश में आबद्ध किया जाय तो इसकी ऊर्जा लगभग होनी चाहिये :

- (1) $\frac{h^2}{32 \pi^2 ma^2}$
- (2) $\frac{h^2}{2 \pi^2 ma^2}$
- $(3) \quad \frac{h^2}{ma^2}$
- $(4) \quad \frac{4\pi^2 h^2}{ma^2}$

59 The eigen-value equation for the operator L^2

$$\underline{L}^2 \Omega(\theta, \phi) = \lambda \Omega(\theta, \phi)$$

The eigen values are given by the relation:

(1)
$$\lambda = \hbar I$$

(2)
$$\lambda = \hbar(l+1)$$

(3)
$$\lambda = \hbar l(l+1)$$

(4)
$$\lambda = \hbar^2 l(l+1)$$

संकारक $\underline{\mathcal{L}}^2$ के लिए आइगेन मान समीकरण है

$$L^2 \Omega(\theta, \phi) = \lambda \Omega(\theta, \phi)$$

आइगेन मान निम्न संबन्ध से प्राप्त होते है :

(1)
$$\lambda = \hbar I$$

(2)
$$\lambda = \hbar(l+1)$$

(3)
$$\lambda = \hbar l(l+1)$$

$$(4) \quad \lambda = \hbar^2 I(I+1)$$

60 The wave function of a particle confined to a cubical box of side b is

$$\Psi = \left(\frac{2}{b}\right)^{3/2} \sin \frac{\pi x}{b} \sin \frac{\pi y}{b} \sin \frac{\pi z}{b}.$$

The probability of finding the particle in the cubical volume defined by $0 \le x \le \frac{b}{2}$; $0 \le y \le \frac{b}{2}$ and $0 \le z \le \frac{b}{2}$ is:

(1)
$$\frac{1}{16}$$

$$(3) \quad \frac{4}{4}$$

(4)
$$\frac{1}{2}$$

भुजा b के लिए घनीय बक्स में परिरुद्ध कण का तरंगफलन है

$$\Psi = \left(\frac{2}{b}\right)^{3/2} \sin \frac{\pi x}{b} \sin \frac{\pi y}{b} \sin \frac{\pi z}{b}$$

 $0 \le x \le \frac{b}{2}$; $0 \le y \le \frac{b}{2}$, $0 \le z \le \frac{b}{2}$ से परिभाषित घनीय आयतन में कण के पाये जाने की प्रायिकता है :

(1)
$$\frac{1}{16}$$

(2)
$$\frac{1}{8}$$

(3)
$$\frac{1}{4}$$

(4)
$$\frac{1}{2}$$

- The degeneracy of the first three energy levels of a cubical box are 61
 - (I) 1, 2, 3
 - (2)1, 3, 3
 - (3) 1, 1, 2
 - (4) 1, 1, 1

किसी घनीय बक्स के प्रथम तीन ऊर्जा स्तरों की अपभ्रष्टता क्रमशः है :

- (1) 1, 2, 3
- **(2)** 1, 3, 3
- (3) 1, 1, 2
- $(4) \cdot 1, 1, 1$
- When the energy E of a particle, incident on a potential barrier of width δ , 62 is half the height V_o of the barrier, the transmission coefficient T is approximately related to δ as:
 - (1) $T \propto \frac{1}{\delta}$
 - (2) $T \propto \frac{1}{\delta^2}$
 - $T \propto \exp(-4k\delta)$
 - (4) $T \approx \exp\left(-4k^2\delta^2\right)$; $k = \left[\frac{2mE}{\hbar^2}\right]^{\frac{1}{2}}$

जब एक कण δ चौडाई की विभव रोधिका पर आपतित होता है और उसकी ऊर्जा Eरोधिका की ऊँचाई V_o की आधी होती है तो पारगमन गुणांक T की δ से सिनकटतः

- (1) $T \propto \frac{1}{\delta}$
- $(2) T \propto \frac{1}{\delta^2}$
- $T \propto \exp(-4k\delta)$
- (4) $T \propto \exp\left(-4k^2\delta^2\right)$; $k = \left[\frac{2mE}{\hbar^2}\right]^{\frac{1}{2}}$

- 63 If E_1 , E_2 and E_3 are the energies of the three lowest levels of hydrogen atom then ratio of energy differences E_3-E_1 and E_2-E_1 will be : (1)(2) 3:2 (3) 9:4 (4) 32:27 यदि हाइड्रोजन परमाणु की तीन निम्नतम स्तरों की ऊर्जाएं $E_1,\,E_2$ व E_3 हो, तो ऊर्जा अन्तराल E_3-E_1 व E_2-E_1 का अनुपात होगा : (1) 3:1 (2) 3:2 (3) 9:4 (4) 32:27 The moment of inertia of a CO molecule is $1.47 \times 10^{-46} \ kg \, m^2$. Minimum 64 excitation energy at this molecule is of the order of: $10^{-1} eV$ (1)(2) $10^{-2} eV$ $10^{-4} eV$ (3) (4) $10^{-5} \rho V$
 - (1) $10^{-1} eV$

कर्जा की कोटी है:

- (3) $10^{-4} eV$
- 65 Four important experiments are Frank-Hertz experiment, Stern-Gerlach experiment, Zeeman effect and Raman effect. The physical property associated with these are respectively:
 - Molecular excitation, splitting of spectral lines, electron spin and atomic energy levels

CO अणु का जड़त्व आघूर्ण $1.47 \times 10^{-46} \ kg \ m^2$ है। इस अणु के लिए न्यूनतम उत्तेजन

(2) $10^{-2} eV$

(4) $10^{-5} eV$

- (2) Atomic energy levels, splitting of spectral lines, electron spin and molecular excitation
- (3) Atomic energy levels, electron spin, splitting of energy levels and molecular excitation
- (4) Electron spin, molecular excitation, splitting of spectral lines and atomic energy levels

चार महत्वपूर्ण प्रयोग है, फ्रेन्क — हर्टज प्रयोग, स्टर्न — गेरलेक प्रयोग, जेमान प्रभाव तथा रामन प्रभाव। इन प्रयोगों से संबन्धित भौतिक गुण क्रमशः है :

- (1) आणविक उत्तेजन, स्पेक्ट्रल रेखाओं का विपाटन, इलेक्ट्रॉन चक्रण व परमाण्वीय ऊर्जा -- स्तर
- (2) परमाण्वीय ऊर्जा स्तर, स्पेक्ट्रम रेखाओं का विपाटन, इलेक्ट्रॉन चक्रण, आणविक उत्तेजन
- (3) परमाण्वीय ऊर्जा स्तर, इलेक्ट्रॉन चक्रण, ऊर्जा स्तरों का विपाटन, आणविक उत्तेजन
- (4) इलेक्ट्रॉन चक्रण, आणविक उत्तेजन, स्पेक्ट्रल रेखाओं का विपाटन, परमाण्वीय ऊर्जा – स्तर

- The electrical quadrupole moment of a nucleus is not zero if the nucleus has:
 - Spherical charge distribution.
 - Total spin equal to zero. (2)
 - Total spin equal to $\frac{1}{2}h$. (3)
 - (4)Total spin at least 1 ħ.

Find correct statement.

नाभिक का वैद्युत चतुर्धुव आघूर्ण शून्य नहीं होगा यदि नाभिक का

- आवेश वितरण गोलीय है।
- कुल चक्रण शून्य है।
- ुकुल चक्रण $\frac{1}{2}\hbar = \frac{1}{8}$ ।
- कुल चक्रण कम से कम 1 के है। सही कथन खोजिये।
- 67 According to liquid drop model, the total binding energy of a nucleus is mainly due to volume effect, surface effect and Coulomb effect. If these contributions are B_1 , B_2 and B_3 respectively, then :
 - B_1 , B_2 and B_3 are all proportional to mass number A. (1)
 - B_1 is proportional to A but B_2 and B_3 are proportional to $A^{2/3}$.
 - B_1 is proportional to A, B_2 is proportional to $A^{2/3}$ and B_3 is proportional to $A^{1/3}$
 - B_1 is proportional to A, B_2 is proportional to $A^{2/3}$ and B_3 is proportional to $A^{-1/3}$.

द्रव बूँद प्रतिरूप के अनुसार किसी नाभिक की कुल बंधन ऊर्जा मुख्यतः आयतन प्रभाव, पृष्ट प्रभाव तथा कुलॉम प्रभाव के कारण होती है। यदि इन प्रभावों के कारण योगदान क्रमशः B_1, B_2 व B_3 हैं, तो :

- $B_1,\,B_2$ व B_3 सब द्रव्यमान संख्या A के अनुक्रमानुपाती होते हैं।
- B_1 A के अनुक्रमानुपाती होता है B_2 तथा B_3 $A^{2/3}$ के अनुक्रमानुपाती होता है। (2)
- B_1 A के अनुक्रमानुपाती होता है, B_2 $A^{2/3}$ के अनुक्रमानुपाती होता है तथा (3) $B_3 = A^{1/3}$ के अनुक्रमानुपाती होता है।
- B_1 A के , B_2 $A^{2/3}$ के व B_3 $A^{-1/3}$ के अनुक्रमानुपाती होता है।

- The binding energy per nucleon of ${}_{1}^{2}H$ nucleus is 1.1 MeV and that for ${}_{2}^{4}He$ nucleus is 7 MeV. If two deuterium nuclei fuse to form a helium nucleus then energy released by fusion of 1 g of deuterium will be about
 - (1) $4 \times 10^{22} MeV$
 - (2) $4 \times 10^{24} MeV$
 - (3) $8 \times 10^{22} \ MeV$
 - (4) $8 \times 10^{24} MeV$

 2_1H नाभिक की, प्रति न्युक्लिऑन बंधन ऊर्जा $1.1\,MeV$ है तथा 4_2He नाभिक के लिए यह $7\,MeV$ है। यदि दो ड्यूटेरियम नाभिक संलयन द्वारा हीलियम नाभिक की रचना करें, तो मुक्त ऊर्जा होगी लगभग :

- (1) $4 \times 10^{22} MeV$
- (2) $4 \times 10^{24} MeV$
- (3) $8 \times 10^{22} MeV$
- (4) $8 \times 10^{24} MeV$
- In a linear accelerator if the initial energy of the ions is negligible then the length of the $(n+1)^{th}$ cylinder L_{n+1} is:
 - (1) Proportional to n
 - (2) Proportional to \sqrt{n}
 - (3) Proportional to n+1
 - (4) Proportional to $\sqrt{n+1}$

रेखिक त्वरित्र में यदि आयनों की प्रारम्भिक ऊर्जा नगण्य है तो (n+1) वीं नालिका की लम्बाई L_{n+1} :

- (1) n के अनुक्रमानुपाती होगी
- (2) \sqrt{n} के अनुक्रमानुपाती होगी
- (3) n+1 के अनुक्रमानुपाती होगी
- (4) $\sqrt{n+1}$ के अनुक्रमानुपाती होगी

		•				
70	For ind	a proton synchroton uction is $2T$. The properties of the proton of the pro	, radius of the protons will have	arti	ticle path is 2 km and the magnetic	
	(1)	400 GeV	(2		800 GeV	
	(3)	1200 <i>GeV</i>	(4		1600 GeV	
	किर्स 2 <i>T</i>	ो प्रोटोन सिन्क्रोटॉन के † है। प्रोटोनों की ऊर्जा ह	लिए कण के पथ		त्रिज्या 2 km है तथा चुम्बकीय प्रेरण	
	(1)	400 GeV	(2)	800 GeV	
	(3)	1200 GeV	(4))	1600 GeV	
	If th	ner counter. Signals (Dotained have 0 <i>[eV</i> also are inc	1.5]	proportional counter and Geiger- V and $10 V$ heights respectively. ent then output signals will have	
-	(2)	0.5 V, $10 V$ and 20				
		0.25 V, $0.5 V$ and $0.25 V$	•			
	(4)	0.5 V, $0.3 V$ and $10 V$				
	0.5 MeV के β कण अनुपातिक गणित्र व गाडगर —स्यूलर गणिन पर अपादिन के ——					
	$0.5\ V$ व $10\ V$ ऊँचाई की संकेत क्रमशः प्राप्त होते हैं। अब यदि $1\ MeV$ के β कण भी आपितत हो जायें तो निर्गत संकेतों की वोल्टता होगी :					
	(1)	0.5 V, 1 V, 10 V व				
	(2)	0.5 V, 10 V ਬ 20 V				
. •		0.25 V, 0.5 V व 10 0.5 V, 1.0 V व 10 V				
		, 1.0, 4 10,				
٤	The engamma (1)	i-rays. What its value	a scintillation of e will be expec (2)	ted	tector is 6.6% for 0.66 MeV d for 1.32 MeV gamma-rays?	
•		.3%	(4)	13	3.2%	
†á	कसी प्र .32 M	Ψ_{V} र संसूचक का 0.66 र् V गामा किरणों के ति	MeV गामा किर तए यह मान क्या	.णों अं	ं के लिए ऊर्जा विभेदन 6.6% है। ।पेक्षित है ?	
		.7%	(2)		6%	
(3	3) 9.	3%	(4)		3.2%	
6_D]			32		10	

73 In a crystal ions vibrate against each other with their centre of mass stationary. The ions have opposite changes. During lattice vibrations, the crystal produces:

- (1) Transverse acoustic waves
- (2) Longitudinal acoustic waves
- (3) Longitudinal optical waves
- (4) Transverse optical waves

एक क्रिस्टल में आयन एक दूसरे के विपरीत कम्पन करते हैं पर उनका द्रव्यमान केन्द्र स्थिर रहता है। आयनों पर आवेश विपरीत प्रकृति के हैं। जाल कम्पनों के दौरान, क्रिस्टल उत्पन्न करता है:

- (1) अनुप्रस्थ ध्वनि तरंगें
- (2) अनुदैर्घ्य ध्वनि तरंगे
- (3) अनुदैर्घ्य प्रकाशिक तरगे
- (4) अनुप्रस्थ प्रकाशिक तरंगें

A plane intercepts the crystal axes with fundamental vectors \vec{a} , \vec{b} , \vec{c} at 3a, 2b and c respectively. The Miller indices of this plane are:

- (1) (3 2 1)
- (2) (2 3 6)
- $(3) \quad \left(\frac{1}{3} \quad \frac{1}{2} \quad 1\right) \qquad \dots$
- $(4) \quad \left(\frac{1}{2} \quad \frac{1}{3} \quad \frac{1}{6}\right)$

मूल सिंदश \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} वाले क्रस्टिल के अक्षों को एक तल क्रमशः 3a, 2b और c पर काटता है। इस तल के मिलर सूचकांक है :

- (1) (3 2 1)
- (2) $(2 \ 3 \ 6)$
- $(3) \quad \left(\frac{1}{3} \quad \frac{1}{2} \quad 1\right)$
- $(4) \quad \left(\frac{1}{2} \quad \frac{1}{3} \quad \frac{1}{6}\right)$

When an X-ray $(\lambda = 1.5 \text{ Å})$ beam strikes a crystal, the first diffraction maxima is observed at the Bragg angle of 30°. The spacing between corresponding planes is:

- (1) 1.5 Å
- (2) $3 \mathring{A}$
- (3) $4.5 \mathring{A}$
- (4) $0.75 \mathring{A}$

जब X- किरण $\left(\lambda = 1.5 \ \mathring{A}\right)$ का पुंज एक क्रिस्टल से टकराता है तो पहला विवर्तन उच्चिष्ठ

- 30° के ब्रेग कोण पर प्रेक्षित होता है। इसके संगत क्रिस्टल तलों के मध्य की दूरी है:
- (1) 1.5 Å
- (2) $3 \mathring{A}$
- (3) 4.5 Å
- (4) 0.75 Å

A current of 1 A flows through a wire of 0.01 cm radius. If the number density of free electrons is $10^{28} m^{-3}$, the mean drift velocity of electrons will be:

- (1) $2 \times 10^{-6} ms^{-1}$
- (2) 0.2 ms^{-1}
- (3) $2 ms^{-1}$
- (4) $0.02 \ ms^{-1}$

 $0.01 \ cm$ त्रिज्या के एक तार में $1 \ A$ धारा प्रवाहित हो रही है। यदि मुक्त इलेक्ट्रॉनों का संख्या घनत्व $10^{28} \ m^{-3}$ है, तो इलेक्ट्रॉनों का माध्य अपवाह वेग होगा :

- (1) $2 \times 10^{-6} ms^{-1}$
- (2) 0.2 ms^{-1}
- (3) $2 ms^{-1}$
- (4) $0.02 \ ms^{-1}$

77 Effective mass of an electron is given by :

$$(1) m^* = \frac{\hbar^2 k^2}{2E}$$

$$(2) m^* = \frac{E}{c^2}$$

$$(3) m^* = \frac{\hbar^2}{\left(\frac{d^2E}{dk^2}\right)}$$

(4)
$$m^* = \frac{m_o}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Where E is energy for wave vector k; m_o is the mass of free electron, v is its velocity, constants \hbar , c have their usual meaning.

इलेक्ट्रॉन का प्रभावी द्रव्यमान होता है :

(1)
$$m^* = \frac{\hbar^2 k^2}{2E}$$

$$(2) m^* = \frac{E}{c^2}$$

$$(3) m^* = \frac{\hbar^2}{\left(\frac{d^2 E}{d k^2}\right)}$$

(4)
$$m^* = \frac{m_o}{\sqrt{1 - \frac{v^2}{c^2}}}$$

जहाँ तरंग सदिश k के लिए ऊर्जा E है, m_o मुक्त इलेक्ट्रॉन का द्रव्यमान है, ν इसका वेग है। स्थिरांक \hbar,c का तात्पर्य सामान्य प्रचलित है।

78 For the isotope of mercury of mass 199.5, the critical temperature is 4.185 K. As per the isotope effect, the critical temperature for the isotope of mass 203.4 will be:

(1) 4.027 K

(2) 4.105 K

(3) 4.146 K

(4) 4.224 K

पारे के द्रव्यमान 199.5 के पारे के समस्थानिक के लिए क्रांतिक ताप $4.185\,K$ होता है। समस्थानिक प्रभाव के अनुसार 203.4 द्रव्यमान के समस्थानिक के लिए क्रांतिक ताप होगा :

(1) 4.027 K

(2) 4.105 K

(3) 4.146 K

(4) 4.224 K

Choose the incorrect statement for cooper pairs: 79

- (1)Their total momentum is zero.
- (2)Their spins are antiparallel.
- (3) Their total charge is -e.
- They can exist upto a few interatomic distances.

कूपर युग्मों के लिए असत्य कथन चुनिये :

- उनका कुल संवेग शून्य होता है। (1)
- इनकी चक्रणें प्रतिसमान्तर होती हैं। (2)
- इनका कुल आवेश होता है। (3)
- ये कुछ अन्तर्परमाणुविक दूरीयों तक रह सकते हैं।

Lagrangian for a simple pendulum of length l and mass m, for small θ , 80 is written as

(1)
$$L = \frac{1}{2} m \left(l^2 \dot{\theta}^2 + 2g l \theta^2 \right)$$
 (2) $L = \frac{1}{2} m \left(l^2 \dot{\theta}^2 - g l \theta^2 \right)$

(2)
$$L = \frac{1}{2} m \left(l^2 \dot{\theta}^2 - g l \theta^2 \right)$$

(3)
$$L = \frac{1}{2} m \left(l^2 \dot{\theta}^2 + g l \theta^2 \right)$$
 (4) $L = m \left(l^2 \dot{\theta}^2 + g l \theta^2 \right)$

(4)
$$L = m \left(l^2 \dot{\theta}^2 + g l \theta^2 \right)$$

किसी सरल लोलक जिसकी लम्बाई l तथा द्रव्यमान m हैं, अल्प θ के लिए, को लिखा जाता है:

(1)
$$L = \frac{1}{2} m \left(l^2 \dot{\theta}^2 + 2gl \theta^2 \right)$$

(2)
$$L = \frac{1}{2} m \left(l^2 \dot{\theta}^2 - g l \theta^2 \right)$$

(3)
$$L = \frac{1}{2} m \left(l^2 \dot{\theta}^2 + g l \theta^2 \right)$$

(4)
$$L = m \left(l^2 \theta^2 + g l \theta^2 \right)$$

For a synchrotron source, the critical wavelength λ_c is defined as : 81

(1)
$$\lambda_c = \left(\frac{4\pi R}{3}\right) \left(\frac{m_o c^2}{E}\right)$$

(1)
$$\lambda_c = \left(\frac{4\pi R}{3}\right) \left(\frac{m_o c^2}{E}\right)$$
 (2) $\lambda_c = \left(\frac{4\pi R}{3}\right) \left(\frac{m_o c^2}{E}\right)^2$

(3)
$$\lambda_c = \left(\frac{4\pi R}{3}\right) \left(\frac{m_o c^2}{E}\right)^3$$
 (4) $\lambda_c = \left(\frac{4\pi R}{3}\right) \left(\frac{E}{m_o c^2}\right)^{-7}$

(4)
$$\lambda_c = \left(\frac{4\pi R}{3}\right) \left(\frac{E}{m_o c^2}\right)$$

Here R is radius of the orbit.

सिन्क्रोट्रोन स्रोत के क्रान्तिक तरंगदैर्घ्य λ_c को परिभाषित करते है :

(1)
$$\lambda_c = \left(\frac{4\pi R}{3}\right) \left(\frac{m_o c^2}{E}\right)$$

(2)
$$\lambda_c = \left(\frac{4\pi R}{3}\right) \left(\frac{m_o c^2}{E}\right)^{2}$$

(3)
$$\lambda_c = \left(\frac{4\pi R}{3}\right) \left(\frac{m_o c^2}{E}\right)^3$$
 (4) $\lambda_c = \left(\frac{4\pi R}{3}\right) \left(\frac{E}{m_o c^2}\right)$

(4)
$$\lambda_c = \left(\frac{4\pi R}{3}\right) \left(\frac{E}{m_0 c^2}\right)$$

जहाँ R कक्ष की त्रिज्या है।

- Bose-Einstein condensation can take place in an assembly of: 82
 - Negatively charged electrons (1)
 - (2)Positively charged protons
 - Neutral particles with spin $\frac{1}{2}$
 - (4) Neutral particles with spin 1

बोस-आइन्सटीन संघनन जिस समूह में हो सकता है, वह है :

- ऋणात्मक आवेशी इलेक्ट्रॉनों का (1)
- धनात्मक आवेशी प्रोटोनों का (2)
- 1 2 चक्रण वाले उदासीन कणों का
- ा चक्रण वाले उदासीन कणों का (4)
- 83 The cross section σ_{el} for elastic scattering can be written in terms of wave vector k and phase shift (2δ) as:

(1)
$$\sigma_{el} = \left(\frac{4\pi}{k^2}\right) \sum_{l=0}^{\infty} \sin^2 \delta_l$$

(1)
$$\sigma_{el} = \left(\frac{4\pi}{k^2}\right) \sum_{l=0}^{\infty} \sin^2 \delta_l$$
 (2)
$$\sigma_{el} = \left(\frac{4\pi}{k^2}\right) \sum_{l=0}^{\infty} (2l+1) \sin^2 \delta_l$$

(3)
$$\sigma_{el} = \left(\frac{4\pi}{k^2}\right) \sum_{l=0}^{\infty} l \sin^2 \delta_l$$

(3)
$$\sigma_{el} = \left(\frac{4\pi}{k^2}\right) \sum_{l=0}^{\infty} l \sin^2 \delta_l$$
 (4) $\sigma_{el} = \frac{\pi}{k^2} \sum_{l=0}^{\infty} (2l+1) \sin^2 \delta_l$

प्रत्यास्थ प्रकीर्णन के लिए तरंग सदिश k व कला विस्थापन δ के पदों में अनुप्रस्थ काट σ_{el} को लिखा जा सकता है :

(1)
$$\sigma_{el} = \left(\frac{4\pi}{k^2}\right) \sum_{l=0}^{\infty} \sin^2 \delta_l$$

(1)
$$\sigma_{el} = \left(\frac{4\pi}{k^2}\right) \sum_{l=0}^{\infty} \sin^2 \delta_l$$
 (2) $\sigma_{el} = \left(\frac{4\pi}{k^2}\right) \sum_{l=0}^{\infty} (2l+1) \sin^2 \delta_l$

(3)
$$\sigma_{el} = \left(\frac{4\pi}{k^2}\right) \sum_{l=0}^{\infty} l \sin^2 \delta_l$$

(3)
$$\sigma_{el} = \left(\frac{4\pi}{k^2}\right) \sum_{l=0}^{\infty} l \sin^2 \delta_l$$
 (4) $\sigma_{el} = \frac{\pi}{k^2} \sum_{l=0}^{\infty} (2l+1) \sin^2 \delta_l$

- 84 Due to Zeeman effect, D_2 line is split in to:
 - (1) 2 lines

(2)4 lines

(3) 6 lines (4) No splitting

जेमान प्रभाव के कारण D_2 लाइन विपाटित हो जाती है :

2 लाइनों में (1)

(2)4 लाइनों में

6 लाइनों में (3)

(4) कोई विपाटन नहीं होता है

勢

For a given *n*-type material, the donor concentration is 10^{16} donor el/cm^3 and the electrical conductivity is $1.6 \, mho/cm$. The charge mobility is:

- (1) $1.6 \times 10^2 \ cm^2 / volt sec$
- (2) 1.6×10^3 cm/volt-sec
- $(3) \quad 10^3 \ cm^2 / volt sec$
- (4) $10^3 cm/volt-sec$

एक n-प्रकार के पदार्थ में दाता सान्द्रता 10^{16} दाता el/cm^3 है तथा वैद्युत चालकता $1.6\ mho/cm$ है। आवेश गतिशीलता है :

- (1) $1.6 \times 10^2 \text{ cm}^2/\text{volt}-\text{sec}$
- (2) $1.6 \times 10^3 \ cm/volt-sec$
- (3) $10^3 cm^2 / volt sec$
- (4) $10^3 cm/volt-sec$

86 The rotational band based on the state $K = \frac{7}{2}$ is known in $\frac{179}{74}W$. Excitation

energy of $\frac{9^{-}}{2}$ state is 120 keV. What it will be for $\frac{13^{-}}{2}$ state?

(1) 180 keV

(2) 390 keV

(3) 440 keV

(4) 520 keV

 $^{179}_{74}W$ के लिए $K=\frac{7}{2}^-$ अवस्था पर घूर्णन बेण्ड ज्ञात है। $\frac{9}{2}^-$ अवस्था के लिए उत्तेजन

ऊर्जा 120 keV है। $\frac{13}{2}$ अवस्था के लिए उत्तेजन ऊर्जा क्या होगी ?

(1) 180 keV

(2) 390 keV

(3) 440 keV

(4) 520 keV

8 7	The energy difference between the photopeak and the high energy edge of the compton electron distribution in the pulse-height spectrum from a scintillator detecting γ -radiation of energy $m_o c^2$ (0.51 MeV) is:							
	(1)	200 keV	(2)	170 keV				
	(3)	140 keV	(4)	55 keV				
	कोई प्र	प्रसुर $m_o c^2$ (0.51 MeV) ऊर्जा के	गामा ी	विकिरण का संचुचन कर रहा है। इसमें				
	फोटो	शिखर व कॉम्पटन इलेक्ट्रॉन वितरण	के उच्च	-ऊर्जा कोर में ऊर्जा अन्तर होता है :				
	(1)	200~keV	(2)	170 keV				
٠.	(3)	140 keV	(4)	55 keV				
-88	Slew	rate of an Op-Amp is specifie	d at:					
	(1)	Unit gain	(2)	Infinite gain				
	(3)	Realistic gain	(4)	None of these				
	एक संक्रिया – प्रवर्धक की स्ल्युदर अंकित की जाती है:							
	(1)	इकाई प्रवर्धन पर	(2)	अनन्त प्रवर्धन पर				
ŗ	(3)	वास्तविक प्रवर्धन पर ो	(4)	उपरोक्त में से कोई नहीं				
89	For	the non-inverting voltage amplif	ier the	closed-loop voltage gain equals:				
	(1) Ratio of feedback resistor to source resistor							
	(2) Negative of the ratio of feedback resistor to source resistor							
	(3) Square root of the ratio of feedback resistor to source resistor							
	(4) Square of the ratio of feedback resistor to source resistor							
	किसी अप्रतिलोमिक वोल्टता प्रवर्धक के लिए बन्द-लूप वोल्टता लाभ होता है :							
	(1) पुनर्निवेशी प्रतिरोध व स्रोत प्रतिरोध का अनुपात							
	(2)	_(पुनर्निवेशी प्रतिरोध व स्रोत प्र	तिरोध	का अनुपात)				
	(3)	पुनर्निवेशी प्रतिरोध व स्रोत प्रतिरोध	ध के उ	भनुपात का वर्गमूल				
	(4)	पुनर्निवेशी प्रतिरोध व स्रोत प्रतिरो	ध के उ	भनुपात का वर्ग				

(a)
$$y = a \sin \frac{2\pi t}{T}$$

(b)
$$y = a \sin vt$$

(c)
$$y = \frac{a}{T} \sin\left(\frac{t}{a}\right)$$

(d)
$$y = \frac{a}{\sqrt{2}} \left(\sin \frac{2\pi t}{T} + \cos \frac{2\pi t}{T} \right)$$

(a = maximum displacement, v = speed of the particle, T = Time period of the motion).

Find the correct formulae as on the basis of dimensions:

$$(1)$$
 (a, b)

(2)
$$(a, d)$$

(3)
$$(a, c, d)$$

$$(4) \cdot (b, d)$$

. आवर्त गति कर रहे किसी कण के विस्थापन y के चार भिन्न सूत्र दिये गये हैं :

(a)
$$y = a \sin \frac{2\pi t}{T}$$

(b)
$$y = a \sin vt$$

(c)
$$y = \frac{a}{T} \sin\left(\frac{t}{a}\right)$$

(d)
$$y = \frac{a}{\sqrt{2}} \left(\sin \frac{2\pi t}{T} + \cos \frac{2\pi t}{T} \right)$$

(a = कण का अधिकतम विस्थापन, <math>v = av की चाल, T = v की का आवर्त काल v = av विमीय आधार सही सूत्र है :

$$(1) \quad (a,b)$$

$$(2)$$
 (a, d)

(3)
$$(a, c, d)$$

(4)
$$(b, d)$$

Sofie

্যচ

A physical quantity P is related to four observables a, b, c and d as follows: $A = \frac{3}{2} + \frac{2}{4} + \frac{2}{5} = \frac{1}{2} + \frac{2}{3} +$

$$P = a^3 b^2 / \left(\sqrt{c} d\right)$$

The percentage errors of measurement in a, b, c and d are 1%, 3%, 4% and 2% respectively. What is the percentage error in the quantity P?

कोई भौतिक राशि P, चार प्रेक्षण-योग्य राशियों a, b, c और d से इस प्रकार संबंधित है :

$$P = a^3 b^2 / \left(\sqrt{c} d\right)$$

a, b, c तथा d के मापने में प्रतिशत त्रुटियाँ क्रमशः 1%, 3%, 4% तथा 2% हैं । राशि P में प्रतिशत त्रुटि होगी :

06_D]

`40

[Contd...

- A ball is thrown vertically upwards with a velocity of 45 ms^{-1} from the top of a multi storey building. The height of the point from where the ball is thrown is 50 m from the ground. How long will it be before the ball hits the ground ? $g = 10 ms^{-1}$.
 - (1) 5 s

(2) 10 s

(3) 15 s

(4) 25 s

किसी बहुमंजिले भवन की ऊपरी छत से कोई गेंद 45 m/s के वेग से ऊपर की ओर ऊर्ध्वाधर दिशा में फेंकी गई है । जिस बिंदु से गेंद गई है उसकी धरती ऊँचाई 50 m है । गेंद को धरती से टकराने में कितना समय लगेगा ? $g = 10 \ ms^{-1}$ लें ।

(1) 5 s

(2) 10 s

(3) 15 s

- (4) 25 s
- A bullet of 0.1 kg is thrown with an initial horizontal velocity of 40 m/s in open space parallel to the Earth surface. The equation of the path of the bullet is: $(g = 10 \text{ m/s}^2)$
 - (1) $y = -\frac{1}{40}x$

(2) $y = +\frac{1}{80}x^2$

 $(3) \quad y = -\frac{1}{320} x^2$

(4) $y^2 = -40 x$

पृथ्वी तल के समान्तर मुक्त आकाश में 0.1~kg की गोली 40~m/s के प्रारम्भिक क्षैतिज वेग से फेंकी जाती है । गोली के पथ के वक्र की समीकरण होगी : $(g=10~m/s^2)$

(1) $y = -\frac{1}{40}x$

- (2) $y = \pm \frac{1}{80} x^2$
- $(3) \quad y = -\frac{1}{320} x^2$
- (4) $y^2 = -40 x$
- A motor boat is moving towards North at 30 km/h and the water current in that region is 12 km/h in the direction of 60° East of South. The resultant speed of the boat is about:
 - (1) 18 km/h

(2) 42 km/h

(3) 26 km/h

 $(4) \quad 22 \ km h$

एक मोटर बोट उत्तर दिशा में 30 km/h के वेग से गतिमान है । इस क्षेत्र में जल-धारा का वेग 12 km/h है तथा जल-धारा की दिशा दक्षिण से पूर्व की ओर 60 पर है । मोटर बोट की परिणामी चाल का मान है लगभग :

(1) 18 km/h

(2) 42 km/h

(3) 26 km/h

(4) 22 km/h

95 The value of x ,	for which	two v	vectors	$\overrightarrow{A} = 5\hat{i} + 2\hat{j} - 4\hat{k}$	and
$\overrightarrow{B} = 4\hat{i} + x\hat{j} - 5\hat{k}$	are mutually p	erpend	licular, is		

$$(1)$$
 -10

(2) 10

(4) ~20

x का मान जिसके लिए दो सदिश $\overrightarrow{A} = 5\hat{i} + 2\hat{j} - 4\hat{k}$ तथा $\overrightarrow{B} = 4\hat{i} + x\hat{j} - 5\hat{k}$ परस्पर लम्बवत् होंगे, है :

$$(1)$$
 -10

(2) 10

(4) -20

A ball of 150 g mass hits a bat with a velocity of 40 m/s and returns in the opposite direction with the same speed. If the bat and ball remain in contact for 15 ms, then the average force experienced by the ball will be of magnitude:

(1) 200 N

. (2) 400 N

(3) 600 N

(4) 800 N

एक 150 g द्रव्यमान की गेंद 40 m/s के वेग से लकड़ी के बल्ले से टकराकर उसी से विपरीत दिशा में लोट जाती है । यदि बल्ला व गेंद 15 ms के लिए सम्पर्क में रहते हैं तो गेंद पर लगने वाले बल का औसत मान है :

(1) 200 N

(2) 400 N

(3) 600 N

(4) 800 N

97 From a rocket, hot gases are coming out in opposite direction at a velocity of 2000 m/s relative to the rocket. If a thrust of 5 × 10⁴ M is the developed on the rocket then the rate of change of fuel by burning in to gases is:

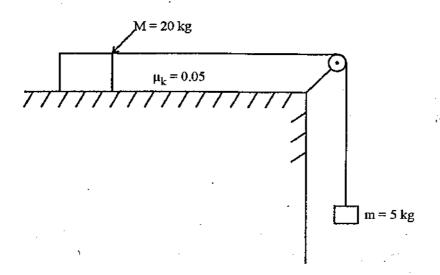
(1) 25 kg/s

(2) 35 kg/s

(3) 15 kg/s

 $(4) \quad 5 \, kg/s$

किसी रॉकेट से रॉकेट के सापेक्ष गर्म गैसें 2000 m/s के वेग से विपरीत दिशा में बाहर निकल रही हैं । यदि रॉकेट पर $5 \times 10^4~N$ का थस्ट (thrust) उत्पन्न करना है तो ईंधन के जलकर गैसों के रूप में बदलने की दर होती है :

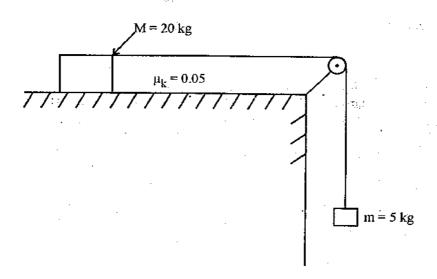

(1) 25 kg/s

(2) 35 kg/s

(3) 15 kg/s

(4) 5 kg/s

A block of $M = 20 \ kg$ is placed on a table. The value of μ_k for block and table is 0.05. A string tied to this block passes over a frictionless pulley and a weight $m = 5 \ kg$ is suspended which is shown in the figure. When the mass m is released the acceleration on the block M is


(1) $0.8 \ m/s^2$

(2) $1.6 \ m/s^2$

(3) $2.0 \ m/s^2$

(4) $4.0 \ m/s^2$

एक M=20~kg का ब्लॉक मेज पर रखा हुआ है । ब्लॉक व मेज के लिए μ_k का मान 0.05 है । इस ब्लॉक से एक रस्सी बाँध कर मेज के सिरे पर लगी घर्षणहीन, हल्की घिरनी से होकर एक m=5~kg का भार लटकाया हैं जैसा कि चित्र में दिखाया गया है । भार m छोड़ने पर ब्लॉक M का त्वरण है :

(1) $0.8 \ m/s^2$

(2) 1.6 m/s^2

(3) 2.0 m/s^2

(4) $4.0 \ m/s^2$

- A particle of 0.5 kg mass is in linear motion with velocity given by $\overrightarrow{v} = ax^{\frac{3}{2}} \hat{x}$ where a = 5 $m^{\frac{-1}{2}}$ s^{-1} . Total work done by the force in displacement of this particle from x = 0 to x = 2 m shall be:
 - (1) 5J
 - (2) 10 J
 - (3) 25 J
 - (4) 50 J

 $0.5 \ kg$ द्रव्यमान का एक कण $\overrightarrow{v} = ax^{\frac{3}{2}} \ \hat{x}$ वेग से रेखीय गति करता है जहाँ $a = 5 \ m^{\frac{-1}{2}} \ s^{-1}$ है । x = 0 से $x = 2 \ m$ तक इसके विस्थापन में कुल बल द्वारा किया गया कार्य होगा :

- (1) 5 J
- (2) 10 J
- (3) 25 J
- (4) 50 J
- 100 A particle of mass m is moving in a circular path of constant radius r such that its centripetal acceleration a_c is varying with time as $a_c = k^2 r t^2$, where k is a constant. The power delivered to the particle by the forces acting on it is
 - (1) $2\pi m k^2 r^2 t$
 - $(2) \quad mk^2r^2t$
 - (3) $\frac{1}{3} m k^4 r^2 t^5$
 - (4) zero

m द्रव्यमान का एक कण स्थिर त्रिज्या r के वृत्ताकार पथ में गित कर रहा है जिसमें अभिकेन्द्री त्वरण a_c समय t के साथ $a_c = k^2 r \ t^2$ के अनुसार बदल रहा है जहाँ k एक स्थिरांक है । इस कण को, इस पर कार्य कर रहे बलों द्वारा, दी गई शक्ति है :

- $(1) \quad 2\pi m k^2 r^2 t$
- $(2) \quad mk^2r^2t$
- (3) $\frac{1}{3}mk^4r^2t^5$
- (4) शून्य

- 101 Elastic collision is taking place between two bodies of masses m_1 and m_2 . Which of the following statements is untrue? (Assume that m_1 is moving and m_2 is at rest.)
 - (1) In one dimensional elastic collision, the ratio of energy transferred to initial kinetic energy is $\frac{4 m_1 m_2}{(m_1 + m_2)^2}$.
 - (2) If $m_1 \neq m_2$, then in two dimensional collision, the two bodies, after collision, will move making an angle of 90° with each other.
 - (3) The total momentum of the bodies is always conserved.
 - (4) When $m_2 < m_1$, then in one dimensional elastic collision after the collision, both bodies move in the same direction.

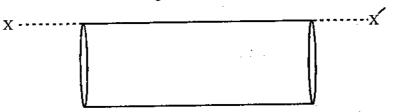
 m_1 व m_2 द्रव्यमान के दो पिण्ड़ों के बीच प्रत्यास्थ संघट्ट हो रहा है । निम्न में कौन सा कथन असत्य है ? (मान लो कि m_1 गतिशील है तथा m_2 विरामावस्था में है ।)

- (1) एक विमीय प्रत्यास्थ संघट्ट में स्थानान्तरित गतिज ऊर्जा व प्रारम्भिक गतिज ऊर्जा का अनुपात $\frac{4m_1\ m_2}{\left(m_1+m_2\right)^2}$ होता है ।
- (2) यदि $m_1 \neq m_2$ हो तो द्विविमीय संघट्ट में संघट्ट के पश्चात् दोनों पिण्ड एक-दूसरे से 90° का कोण बनाते हुए गति करेंगे ।
- (3) पिण्डों का कुल संवेग सदैव संरक्षित रहता है ।
- (4) जब $m_2 < m_1$ हो तो एक विमीय प्रत्यास्थ टक्कर के पश्चात् दोनों पिण्ड एक ही दिशा में गित करते हैं ।
- 102 A block of 4 kg mass is moving on a frictionless surface with a speed of 1.5 m/s. The block stops after compressing a spring fixed in its path. If the force constant of the spring k = 25 N/m, then compression in the spring will be
 - $(1)^{-1}0.2.m$

(2) = 0.4 m

 $(3) \quad 0.5 \ m$

 $(4) \quad 0.6 \ m$

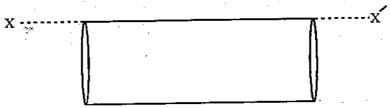

4 kg द्रव्यमान का एक गट्टा किसी क्षैतिज धर्षण रहित धरातल पर 1.5 m/s की चाल से गितमान है । गट्टा इसके पथ में स्थित स्प्रिंग को संपीडित कर रूक जाता है । यदि स्प्रिंग का बल नियतांक $k=25\ N/m$ हो तो स्प्रिंग में संपीड़न होगा :

(1) 0.2 m

 $(2) \quad 0.4 \ m$

 $(3) \quad 0.5 \ m$

 $(4) \quad 0.6 m$


(1) $10800 \ gcm^2$

(2) 7200 gcm^2

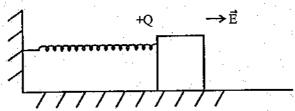
(3) 3600 gcm^2

(4) 14400 gcm^2

 $12\pi cm$ की चोड़ाई की एक पतली प्लेट को बेलन के रूप में बदला जाता है जिससे इसकी परिधि चोड़ाई के बराबर है । प्लेट का द्रव्यमान $200\ g$ है । इसकी सतह पर स्थित अक्ष X-X' के परितः इसका जड़त्व आधूर्ण का मान होगा :

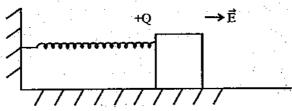
(1) $10800 \ gcm^2$

(2) 7200 gcm^2


(3) 3600 gcm^2

- (4) 14400 gcm^2
- The mass of oxygen molecule is 5.30×10^{-26} kg and its moment of inertia about an axis passing through its centre and perpendicular to the line joining the two atoms is 1.94×10^{-46} kg m^2 . Assume that the average speed of such molecules of the gas is $500 \, m/s$ and its rotational energy is two thirds of its kinetic energy. The average angular speed of the molecule is
 - (1) $5.5 \times 10^{10} \ rad \ s^{-1}$
- (2) $6.7 \times 10^{12} \ rad \ s^{-1}$
- (3) $9.2 \times 10^{12} \text{ rad s}^{-1}$
- (4) $8.4 \times 10^{10} \ rad \ s^{-1}$

आक्सीजन अणु का द्रव्यमान $5.30\times 10^{-26}~kg$ है तथा इसके केन्द्र से होकर गुजरने वाली और इसके दोनों परमाणुओं को मिलाने वाली रेखा के लम्बवत् अक्ष के परितः जड़त्व आधूर्ण $1.94\times 10^{-46}~kg~m^2$ है । मान लीजिए कि गैस के ऐसे अणुओं की औसत चाल 500~m/s है और इसके घूर्णन की गतिज ऊर्जा, स्थानान्तरण की गतिज ऊर्जा की दो तिहाई है । अणु का औसत कोणीय चाल है :


- (1) $5.5 \times 10^{10} \ rad \ s^{-1}$
- (2) $6.7 \times 10^{12} \ rad \ s^{-1}$
- (3) $9.2 \times 10^{12} \ rad \ s^{-1}$
- (4) $8.4 \times 10^{10} \text{ rad s}^{-1}$

A spring-block system undergoes simple harmonic motion on a smooth horizontal surface. The block is now given some positive charge +Q and a uniform horizontal electric field to the right is switched on (Fig.). As a result,

- (1) The time period of oscillation will increase
- (2) The time period of oscillation will decrease
- (3) The time period of oscillation will remain unaffected and it will continue to oscillate as before around same mean position
- (4) Tie time period of oscillations will remain unaffected but the mean position of simple harmonic motion will change

एक स्प्रिंग-लट्ठे का निकाय चिकनी क्षैतिज सतह पर सरल आवर्त गति कर रहा है। इस लट्ठे को कोई आवेश +Q दिया जाता है तथा एकसमान क्षैतिज विद्युत क्षेत्र दाहिनी ओर लगाया जाता है (चित्रानुसार) । इसके कारण :

- (1) इसका दोलन काल बढेगा
- (2) इसका दोलन काल घटेगा
- (3) इसका दोलन काल वही रहेगा तथा पहले की तरह उसी माध्य स्थिति पर यह दोलन करता रहेगा
- (4) इसका दोलन काल तो वही रहेगा पर इसकी माध्य स्थिति बदल जायेगी
- 106 For a damped oscillator, mass of the block is 200 g, $k = 90 Nm^{-1}$ and damping constant $b = 40 g s^{-1}$. The time in which its mechanical energy will be one-half of its initial value, is
 - (1) -10.22 s

(2) 6.93 s

(3) F3,46 s

(4) 1.73 s

किसी अवमंदित दोलक के लिए गुटके का द्रव्यमान 200~g, $k=90~N~m^{-1}$ तथा अवमंदन स्थिरांक $b=40~g~s^{-1}$ है । वह समय जिसमें यांत्रिक ऊर्जा अपने आरंभिक मान की आधी रह जायेगी, है :

(1) 10.22 s

(2) 6.93 s

(3) 3.46 s

(4) 1.73 s

107 An object of 90 N weight is taken (i) at a height of $\frac{R}{2}$ from the surface	ce of						
the Earth and (ii) at a depth of $\frac{R}{2}$ from the surface where $R = 6400$							
(radius of Earth). Then weight of the object will be respectively: (1) 40 N; 32 N (2) 45 N; 40 N							
(3) $40 N$; $45 N$ (4) $32 N$; $40 N$							
एक 90 N भार वाली वस्तु को (i) पृथ्वी की सतह से $\frac{R}{2}$ ऊँचाई पर (ii) पृथ्वी सत	ह से						
$\frac{R}{2}$ गहराई पर ले जाया जाये जहाँ $R = 6400 \ km$ (पृथ्वी की त्रिज्या) हैं, तब वस्	ुका						
भार क्रमशः होगा – पृथ्वी की सतह पर $g = 9.8 ms^{-2}$ लें ।	भार क्रमशः होगा – पृथ्वी की सतह पर $g = 9.8 ms^{-2}$ लें ।						
(1) $40 N$; $32 N$ (2) $45 N$; $40 N$							
(3) $40 N$; $45 N$ (4) $32 N$; $40 N$							
108 The average distances of Sun from Earth is 0.6 times the distance of the from some other planet. The time taken by the other planet for one revolut of Sun will be	Sun ion						
(1) 1.6 years (2) 1.2 years							
(3) 2.1 years (4) 6.1 years							
सूर्य से पृथ्वी की औसत दूरी किसी दूसरे ग्रह की औसत दूरी का 0.6 है । इस ग्रह र सूर्य का एक चक्कर लगाने में लगने वाला समय होगा	ग्नरा						
(1) 1.6 वर्ष (2) 1.2 वर्ष							
(3) 21 वर्ष (4) 6.1 वर्ष							

- 109 A rod, fixed on its ends, is loaded in the middle. Which of the following statements in incorrect regarding its bending?
 - (1) The bending becomes eight times if length is doubled.
 - (2) Bending is inversely proportional to width.
 - (3) To decrease bending, its thickness should be large.
 - (4) For reducing bending, a material with small Young's modulus Y should be used

किसी दण्ड को सिरों पर आधारित करके, मध्य में भार लगाया जाता है । इसमें होने वाले बंकन के संबंधित कौन सा कथन असत्य है ?

- (1) बंकन लंबाई दुगुनी करने पर बंकन आठ गुना हो जाता है।
- (2) बंकन चौडाई के व्युत्क्रमानुपाती होता है।
- (3) बंकन कम करने के लिए दण्ड की मोंटाई अधिक होनी चाहिये ।
- (4) बंकन कम करने के लिए ऐसे द्रव्य का उपयोग करना चाहिये जिसका यंग गुणांक Y कम हो ।

1	10	A solid cube of copper has side of $10 \ cm$. When a hydraulic pressure of $7.20 \times 10^6 \ Pa$ is applied on it, the compression in its volume is $0.06 \ cm^3$. Its bulk modulus will be:						
		(1)	$120 \times 10^9 \ Nm^{-2}$	(2)	$120 \times 10^8 \ N m^{-2}$			
		(3)	$7.26 \times 10^8 \ Nm^{-2}$	(4)	$7.26 \times 10^{10} \ Nm^{-2}$			
		ताँबे वे	ь एक ठोस घन का किनारा 10 a	cm काहै	। इस पर $7.20 imes 10^6~Pa$ का जलीय			
		दाब ल होगा		_{cm} 3 का संबु	ज्ञचन होता है । ताँबे का आयतन गुणांक ज्ञान			
		(1)	$120 \times 10^9 \ Nm^{-2}$	(2)	$120 \times 10^8 \ Nm^{-2}$			
•		(3)	$7.26 \times 10^8 \ N m^{-2}$	(4)	$7.26 \times 10^{10} \ N m^{-2}$			
· 1	111	A few statements are given below regarding the surface tension of a liquid. Choose the correct option:						
		(a)			due to inter molecular forces.			
		(b)	The surface tension of t temperature	the liquids	decreases on increasing their			
		(c) When phenol, soap are added, then surface tension of water increases.						
:		(d)	When soluble material li increases.	ke salt is	dissolved, the surface tension			
		(1)	(a, d)	(2)	(a, b, c)			
		(3)	(b, d)	(4)	(a, b, d)			
		किसी चुनिये	· -	में कुछ कथन	ंनीचे दिये गये है । इनमें सही विकल्प			
•		(a)	द्रव में पृष्ट तनाव आणविक ब	ालों के कार	ण उत्पन्न होते हैं ।			
		(b)	द्रव का पृष्ट तनाव ताप बढाने	पर घटता	है ।			
		(c)	जल में फिनोल, साबुन डालने	पर पृष्ट तन	गव बढता है ।			
		(d)	जल में घुलनशील जैसे नमक	घोलने पर पृ	ष्ट तनाव बढ़ता है ।			
		(1)	(a, d)	(2)	(a, b, c)			
		(3)	(b, d)	(4)	(a, b, d)			
¢.	06_]	D]		49	[Contd			

ċ

100							
110	A solid cube of copper has side of 10 cm. When a hydraulic pressure of						
		$\times 10^6$ Pa is applied on it, the ulk modulus will be:	compr	ession in its volume is 0.06 cm ³ .			
	(1)	$120 \times 10^9 \ N m^{-2}$	(2)	$120 \times 10^8 \ N m^{-2}$			
	(3)	$7.26 \times 10^8 \ Nm^{-2}$	(4)	$7.26 \times 10^{10} \ Nm^{-2}$			
	ताँबे र	के एक ठोस घन का किनारा 10 cm	का है	। इस पर $7.20 imes 10^6~Pa$ का जलीय			
	दाब त होगा		³ का _. सं	कुचन होता है । ताँबे का आयतन गुणांक			
	(1)	$120 \times 10^9 \ Nm^{-2}$	(2)	$120 \times 10^8 \ N m^{-2}$			
·	(3)	$7.26 \times 10^8 \ Nm^{-2}$	(4)	$7.26 \times 10^{10} \ N m^{-2}$			
111	A few statements are given below regarding the surface tension of a liquid. Choose the correct option:						
	(a)	The surface tension in liquid	s arise	s due to inter molecular forces.			
	(b)			ds decreases on increasing their			
	(c)	When phenol, soap are added	l, then	surface tension of water increases.			
	(d)-			is dissolved, the surface tension			
•	(1)	(a,d)	(2)	(a, b, c)			
	(3)	(b, d)	(4)	(a, b, d)			
	किसी द्रव को पृष्ट तनाव के सम्बन्ध में कुछ कथन नीचे दिये गये है । इनमें सही विकल्प चुनिये :						
. •	(a):		के का	ारण उत्पन्न होते हैं ।			
	(b)	`	•	·			
	(c)	जल में फिनोल, साबुन डालने पर					
	(d)	- 2 2 3					
	(l)		(2)				
				(a, b, d)			
		(b, d)		[Contd			
06	Dl		1 9	լ Հայլա			

			•	,				
112	If w	ork done in th k done to ma	e construction	of a but	ble of radiu	srisW,	then addi	itional
	(1)	W		(2				
	(3)	3 W		. (4	,			•
	r हि में अ	ाज्या के बुलबुले तिरिक्त कार्य हे	की रचना में कि गा			बुलबुले की	त्रिज्या 2 <i>r</i>	करने
	(1)	W		(2). 2W			
•	(3)	3 W		(4) 2 W) 4 W	in the second of	. 1 1	٠
113	Whic	h is the corre	ect avaración	for D				
	ρ, ν,	ch is the correct d and η are eter of the tu	e respectively	the de	nsity, speed	of flow	of the lie	quid,
	(1)	$\sqrt{\frac{\rho\eta}{vd}}$		(2)	$\frac{\rho vd}{\eta}$			·
	(3)	<u>νd</u> ρη		(4)	$\sqrt{\frac{\rho dv}{\eta}}$	·		
	रेनल्ड्र	न संख्या R_e का	सही सूत्र कौन	सा है ?				-
	ρ, ν,	d और η क्रमश ा गुणांक है ।	ाः तरल का घन	त्व, प्रवाह	की चाल, नि	लेका का व्य	सिव तरल	का
	(1)	$\sqrt{\frac{\rho\eta}{vd}}$		(2)	<u>ρνd</u>	<i>77 - 1</i> 7 - 37	op fe S	
		, , , , , , , , , , , , , , , , , , ,			η			
((3)	<u>νd</u> ρη		(4)	$\sqrt{\frac{\rho d v}{\eta}}$	•		
				•			3	
. 1	relocit	ere of 2 mm y of 5 cm/s. s terminal vel	If a sphere of	f the sa	a liquid and me material	d achieve of 4 mm	radius fa	nal alis
((1)	$2.5 \ cm/s$		(2)	5 cm/s	. : 21	l .	
	-	0 cm/s		(4)	$20 \ cm/s$	V**		
- 41	2 <i>mm</i> इस्ता है ग _ं होग	त्रिज्या का एक । यदि इसी पदाश । :	गोला किसी द्रव र्थ का गोला जिस	में गिरता की त्रिज्या	हैं तथा 5 cm 4 mm है, पि	1/s का ओं रिता है तो	तेम वेग प्र उसका अनि	ाप्त तम
(1	l) 2	.5 cm/s		(2)	5 cm/s			
(3	3) 1	0 cm/s		(4)	20 cm/s	· · · .	. :	
06_D]		·•	. 5	* -			[Contd.	0

115	are n	isotopes of uranium resent in uranium is in percent at a	hexafluorid	e, then st	ate the difference	in their average
				(2)	0.2%	
	(1)	0.4%	·	(4)	0.1%	
	(3)	0.3% यम के दो समस्थानिकों	के बन्मण्य ०	• ′		निराम हेस्साफ्लोराइड
	गैस में	यम के दो समस्यानिक में ये दोनों समस्यानिक त अन्तर बताईये ।	ह विद्यमान ह	हे, तो किर	ी भी ताप पर इन	की औसत चालों में
	(1)	0.4%	1441 8211 1	(2)	0.2%	
	` '	0.3%		(4)		
	(3)	0.370		(1)	•	
1	•					
116	For .	a gas of non-rigid	diatomic n	nolecules,	the value of γ	$\left(\gamma = \frac{c_p}{c_v}\right)$ will be
	(1)	97		(2)	$\frac{7}{5}$	
	(3)	5/3			11 9	
	किसी	। अद्दढ़ द्विपरमाणुक	अणु की गै	स के लिए	γ का मान होगा	$: \left(\gamma = \frac{c_p}{c_v} \right)$
		9	77		7	
	(1)	7		. (2)	5	. •
		5			11	As A Section 1985
	(3)	$\frac{3}{3}$	i.	(4)	9	
117	If a	a and b are Van c	ler-Waal's c	onstants	and R is a gas	constant, then unit
·		a	-तिः ि ।			
	of ·	$\frac{a}{Rb}$ is that of:	Ÿ			
	(1)	Entropy		(2)	Temperature	
	(3)	Pressure		(4)	Volume	
	यदि	a एवं b वंडर $-$ व	ाल नियतांक	तथा <i>R</i> [†]	ौस स्थिरांक हैं तो	$\frac{a}{Rb}$ की इकाई है :
	(1)	एन्ट्रॉपी की		(2)	ताप की	
		दाब की		(4)	आयतन की	
06_				51		[Contd

118	A Carnot engine extracts 240 J from a high temperature reservoir and
	rejects $100 J$ to sink at $7^{\circ}C$ in each cycle. What is the temperature of the reservoir?

(1) 440 K

(2) 551 K

(3) 625 K

(4) 672 K

एक कार्नो इंजिन उच्चताप रिजरवायर से प्रत्येक चक्र में 240 J ऊर्जा लेता है तथा 7° पर सिंक को 100 J वापस कर देता है । रिजरवायर का ताप क्या है ?

(1) 440 K

(2) 551 K

(3) 625 K

(4) 672 K

119 Viscous force is:

- (1) Electromagnetic force
- (2) Gravitational force

(3) Nuclear force श्यान बल है :

- (4) Weak force
- (1) विद्युत चुम्बकीय बल
- (2) गुरुत्वाकर्षण बल

(3) नाभिकीय बल

- (4) क्षीण (दुर्बल) बल
- 120 Two identical rods are made of different materials whose thermal conductivities are k_1 and k_2 . They are placed, as shown in fig., end to end between two heat sources at temperatures T_1 and T_2 . The temperature of the junction of the rods is

$$T_1$$

 $(1) \quad \frac{T_1 + T_2}{2}$

(2) $\frac{k_1 T_1 + k_2 T_2}{\left(k_1 + k_2\right)}$

 $(3) \quad \frac{k_1 T_2 + k_2 T_1}{k_1 + k_2}$

(4) $\frac{|k_1T_1-k_2T_2|}{|k_1-k_2|}$ equal (4)

दो भिन्न पदार्थों से निर्मित एक समान छड़ें है जिनकी उप्मा चालकताएं k_1 व k_2 है । इन्हें सिरे—से—सिरे तक दो उप्मा के स्रोतों जिनका ताप T_1 च T_2 है पर रखा हुआ है । (चित्र में दर्शाए अनुसार) । छड़ों की संधि का ताप होगा :

$$T_1$$
 K_1 K_2 T_2

 $(1) \quad \frac{T_1 + T_2}{2}$

(2) $\frac{k_1 T_1 + k_2 T_2}{\left(k_1 + k_2\right)}$

(3) $\frac{k_1 T_2 + k_2 T_1}{k_1 + k_2}$

(4) $\frac{\left|k_{1}T_{1}-k_{2}T_{2}\right|}{\left|k_{1}-k_{2}\right|}$

06_**D**]

- 121 In schools mental health improvement programmes are organized because of
 - (1) Availability of guidance facilities
 - (2) Traditional attitude of teachers
 - (3) Lack of trained teachers
 - (4) Large number of students

विद्यालयों में मानसिक स्वास्थ्य के सुधार के कार्यक्रम आयोजित किये जाते है, क्योंकि

- (1) निर्देशन की सुविधाओं की उपलब्धता है
- (2) शिक्षकों का परंपरागत दृष्टिकोण
- (3) प्रशिक्षित अध्यापकों का अभाव
- (4) छात्रों की बढ़ती संख्या
- 122 The process of moulding behaviour in conformity with an ideal is called
 - (1) Teaching strategy
 - (2) Teaching model
 - (3) Teaching approach
 - (4) Teaching policy

किसी आदर्श के अनुरूप व्यवहार को ढालने की प्रक्रिया को कहा जाता है

- (1) शिक्षण व्यूह रचना
- (2) शिक्षण प्रतिमान
- (3) शिक्षण उपागम
- (4) शिक्षण नीति
- 123 The components of teaching model are
 - (1) Aims and objectives
 - (2) Objectives and syntax
 - (3) Social system and evaluation
 - (4) All above

शिक्षण प्रतिमान के तत्व है

- (1) लक्ष्य एवं उद्देश्य
- (2) उद्देश्य एवं संरचना
- (3) सामाजिक प्रणाली एवं मूल्यांकन
- (4) उपरोक्त सभी

124 Match correct pair

- (1) Glasser Computer Based Teaching Model
- (2) Flander Social Interaction Model
- (3) Socrates Concept Attainment Model
- (4) Flander Basic Teaching Model सही जोडे का चयन कीजिए
- (1) ग्लेशर कम्प्यूटर आधारित शिक्षण प्रतिमान
- (2) फ्लैंडर सामाजिक अन्तः क्रिया प्रतिमान
- (3) सुकरात निष्यत्ति शिक्षण प्रतिमान
- (4) फ्लैंडर बुनियादी शिक्षण प्रतिमान

125 Which of the following is correct?

- (1) Graphic material Demonstration, drama
- (2) Display board material Film strip, slide
- (3) Three dimensional material Model, mobile
- (4) Audial material Flannel board, bulletin board निम्न में से कौन-सा सही है ?
- (1) ग्राफिक सामग्री प्रदर्शन, अभिनय
- (2) डिस्प्ले बोर्ड सामग्री फिल्म स्ट्रिप, स्लाइड
- (3) त्रिआयामी सामग्री मॉडल, मोबाइल
- (4) श्रव्य सामग्री फ्लैनल बोर्ड, बुलेटिन बोर्ड
- 126 The material aid which makes popular and up to date knowledge as a electronic brain is
 - (1) V.C.R.
 - (2) C.C.T.V.
 - (3) Television

(4) Computer

विद्युत मित्तिष्क के रूप में सर्वाधिक लोकप्रिय एवं ज्ञान को अद्यतन बनाने वाली सहायक सामग्री है

- (1) V.C.R.
- (2) सी. सी. टी. वी.
- (3) टेलीविजन
- (4) कम्प्यूटर

06_DJ

54

[Contd...

ocio

127	The	origin of modern programmed	instruction arose	from the		igensis Ve
	(1)	Psychology of learning				
	(2)	Technology of learning				
	(3)	Technology and Psychology of	of learning			
	(4).	Science and Art of learning				
	आधु	निक अभिक्रमित अनुदेशन की उत्पत्ति	का कारक है			
	(1)	अधिगम का मनोविज्ञान				
•	(2)	अधिगम की तकनीकी				. 544
	(3)	अधिगम का मनोविज्ञान व तकनीक	ì			
	(4)	अधिगम का विज्ञान व कला				
	(.)					
128	Theo	cory of small steps, belongs to				
,120	(1)	Linear programme				
	(2)	Branching programme				
	(3)	Mathetics programme				· · ·
	(4)	All above		North Carlo		
	लघु	पदों के सिद्धान्त का संबंध है				
	(1)	रेखीय अभिक्रमित				
	(2)	शाखीय अभिक्रमित				e.
	(3)	2 0	e Sue de			
	(4)					
129	It c	combines learning and evaluation device, so learning by	on, it is a sort of this is	of self lea	arning and se	elf
	· (1)	Psychological				·. · ·
	(2)	Educational				:
	(3)	Social				11.
	(4)					.
		अधिगम् _त तथा मूल्यांकन को जोड़ता तः इसके द्वारा सीखना है	हे, यह स्वाधिगम तथ	ग्रा स्वमूल्यां	कन का प्रकार	₹,
•	(1)					
	(2)			· · · · · ·	1	
	(3)	•				
	เวเ	। प्राथाणिक		•		

[Contd...

(4) व्यक्तिगत

06_D]

- 130 Every learner follows the same path and it is called
 - (1) Linear programme
 - (2) Branching programme
 - (3) Linear and Branching programme
 - (4) Mathetics programme

प्रत्येक अधिगमकर्ता एक समान रास्ते का अनुकरण करता है, कहा जाता है

- (1) रेखीय अभिक्रमित
- (2) शाखीय अभिक्रमित
- (3) रेखीय व शाखीय अभिक्रमित
- (4) अवरोह अभिक्रमित .
- 131 The form of technology as a software approach is
 - (1) Concrete
 - (2) Abstract
 - (3) Concrete and Abstract
 - (4) Objectives and Learning सॉफ्टवेयर उपागम तकनीकी का प्रकार है
 - (1) मूर्त
 - (2) अमूर्त
 - (3) मूर्त व अमूर्त
 - (4) अधिगम व उद्देश्य
- 132 Computer assisted instruction is individualised instruction devices, because
 - (1) Students having varied type entering behaviour
 - (2) Learner can learn the same content
 - (3) A computer takes decision about the instructional material on the basis of learners entering behaviour
 - (4) All above

कम्प्यूटर सहायतित अनुदेशन व्यक्तिगत अनुदेशन है, क्योंकि

- (1) विद्यार्थियों के विभिन्न प्रकार के प्रारंभिक व्यवहार होते है
- (2) अधिगमकर्ता विभिन्न प्रकार की अनुदेशन सामग्री से समान विषय वस्तु सीखते है
- (3) एक कम्प्यूटर अधिगमकर्ता के प्रारंभिक व्यवहार के आधार पर निर्णय लेता है
- (4) उपरोक्त सभी

06_D]

265

133	"A'	system is a regularly interacting	of ind	ependent groups of items forming
	(1)	nified whole." This definition is Unwin		
	(3)	Kulshrestha	(2)	Webester P. D. Singh
	` '		(4) Di an	R. P. Singh
		प्रभाषा एकाकृत रूप म ।नामत इकाइर से कार्य करता है, यह परिभाषा है	યા વગ	वह समूह है जो नियमित रूप से स्वतंत्र
	(1)	अनविन	(2)	वेबस्टर
	` ′	कुलश्रेष्ठ	(4)	
	(3)	3/4/30	(4)	जार. पा. सिह
134	Whi	ich is not method of system app	roach	7
	(1)	System Engineering	(2)	System Analysis
	(3)		(4)	System Research
	निम्न	में से कौन-सी प्रणाली उपागम की प	• •	=
	(1)	प्रणाली अभियांत्रिकी		प्रणाली विश्लेषण
	` '	प्रणाली उपागम	• •	प्रणाली शोध
	(5)	\$ IXII 9 II I	(1)	ત્ર મળા સાવ
135	Basi	c elements of system are		
	(1)	Input and output		
	(2)	Environment and input		
	(3)	Output, input and environment	t.	
	(4)	Environment and output		
	प्रणाल	नी के मुख्य तत्व है		
	(1)	अदा व प्रदा		• .
	(2)	परिवेश व अदा		·
	(3)	प्रदा, अदा व परिवेश		
		परिवेश व प्रदा		
	•	975E		
136	Com		ke the	place of teacher for teaching.
	That	is		Associate to touching,
	(1)	Change in behaviour		all controls
٠	(2)	To rake decision for teaching		$\mathcal{M}_{\mathcal{A}} = \{ (x,y) \in \mathcal{A} \mid (x,y) \in \mathcal{A} \mid (x,y) \in \mathcal{A} \}$
	(3)	To devide teaching process		
	(4)	All above		
	कम्प्यू	ट्र शिक्षक का स्थान ग्रहण-कर शिक्षण	का स्थ	यान ग्रहण कर शिक्षण प्रदान करने हेतु
	जो ज	टिल कार्य करता है, वह है		
	(1)	व्यवहार परिवर्तन करना		
	(2)	शिक्षण के लिए निर्णय लेना		
	(3)	शिक्षण प्रक्रिया को विभाजित करना		
	(3) (4)	शिक्षण प्रक्रिया को विभाजित करना उपरोक्त सभी		

137	The knowledge of Intelligent Quotient of a learner is useful for a teabecause	icher,							
	(1) Knowledge of body structure of learner								
•	(2) To know the moral character of learner								
	(3) To know the physical deformity of learner								
	(4) To make teaching work successful and effective								
	एक शिक्षार्थी की बुद्धि लिब्ध का ज्ञान एक शिक्षक के लिए उपयोगी है, क्योंकि								
	(1) शिक्षार्थी के शारीरिक संगठन का ज्ञान होता है								
• • • •	(2) शिक्षार्थी के नैतिक चरित्र का पता लगाने के लिए								
	(3) शिक्षार्थी के शारीरिक विकृति का ज्ञान होता है								
	(4) शिक्षण कार्य को सफल एवं प्रभावी बनाने में	-							
138	A Teacher, with the knowledge of mental development of the learner								
150	not plan	, can							
	(1) Curriculum (2) Teaching method								
	(3) Selection of content (4) Physical development								
	एक शिक्षक, शिक्षार्थी के मानसिक विकास का ज्ञान प्राप्त करके जिसकी योजना नर्ह	ाँ बना							
	सकता, वह है								
	(1) पाठ्यक्रम (2) शिक्षण विधि								
	(3) विषय वस्तु का चयन (4) शारीरिक विकास								
	이 기계 (1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.								
139	Mental development does not refer to								
•	(1) Weight and height of the student								
·	(2) Development of memory								
	(3) Reasoning and Judgement								
	(4) Ability of understanding								
	मानसिक विकास का संबंध नहीं है								
	(1) शिक्षार्थी का वजन एवं ऊँचाई								
* * *	(2) स्मृति का विकास								
	(3) तर्क एवं निर्णय								
	(4) अवबोध की क्षमता								

140	Which	of the	following	statement	is incorrect	2
-----	-------	--------	-----------	-----------	--------------	---

- (1) In each situation there is a scope for a student to learn.
- (2) Educational psychology is a pure science as mathematics and physics.
- (3) In its methods of study educational psychology is a science.
- (4) Educational psychology in its scope includes all educational situations. निम्न कथनों में से कौन-सा असत्य है ?
- (1) प्रत्येक रियति / परिस्थिति में विद्यार्थी के लिए सीखने का क्षेत्र होता है ।
- (2) शिक्षा मनोविज्ञान एक शुद्ध विज्ञान है जैसे कि गणित तथा भौतिक विज्ञान ।
- (3) शिक्षा मनोविज्ञान अध्ययन की विधियों में एक विज्ञान है ।
- (4) शिक्षा मनोविज्ञान के क्षेत्र में सभी शिक्षा स्थितियाँ / परिस्थितियाँ सम्मिलित होती है ।

141 Adolescent should not be given

- (1) Motivation
- (2) Sympathy
- (3) Allurement
- (4) Opportunity for shouldering responsibilities किशोरों को नहीं दिया जाना चाहिए
- (1) अभिप्रेरणा
- (2) सहानुभूति
- (3) लालच
- (4) जिम्मेदारियाँ उठाने के अवसर

142 The number of bones becomes less in a human body

(1) Infancy

(2) Childhood

am Fr

- (3) After adolescent
- (4) After adult

मनुष्य के शरीर में हड़ियों की संख्या कम होती है

(1) शैशवावस्था

- (2) बाल्यावस्था
- (3) किशोरावस्था के बाद
- (4) प्रौढ़ावस्था के बाद

	(1)	Teaching	(2)	Learning		
	(3)	Motivation	(4)	Instruction		
	किसको प्रशिक्षण द्वारा व्यवहार में संशोधन की प्रक्रिया माना गया है?					
	(1)	शिक्षण	(2)	अधिगम		
	(3)	अभिप्रेरणा	(4)	निर्देश		
	-	•		•		
144 A child is regard to be socially well developed i				eloped if he		
	(1)	Knows how he should behave	in so	ciety of different types of persons		
	(2)	Not popular among his peers				
1800 m	(3)	Has unhealthy relation with the	relati	on with the members of his family		
	(4)	Spents much time at his comp	uter	•		
	एक र	बालक सामाजिक रूप से पूर्णतः विकां	सत मा	ाना जायेगा यदि वह		
	(1)	विभिन्न प्रकार के व्यक्तियों के साथ	व्यवह	ार करना जानता है		
	(2)	अपने साथियों के बीच लोकप्रिय नर्ह	ों है			
DESCRIPTION	(3) अपने परिवार के सदस्यों के साथ स्वस्थ्य सम्बन्ध नहीं रखता					
Ÿ	(4)	(4) वह अपना अधिकांश समय कम्प्यूटर के साथ व्यतीत करता है				
		9186 j		√.		
145	A/m	isguided adolescent can be guid	ed by	/		
	(1)	Praising his good behaviour		(કુ		
	(2)	Scolding him				
	(3)	Exposing his faults	<u>,</u> ()	(309)		
	(4)	Alluring	12.3	To B		
	एक रि	देग भ्रमित किशोर का पथ-प्रदर्शन वि	क्या ज	॥ सकता है		
	(1)	उसके अच्छे व्यवहार की प्रशंसा कर	के			
	(2)	फटकार लगाकर / झिड़क कर		·** ₂ /		
	(3)	उसके दोषों को उजागर करके				
	(4)	लालच देकर				
	• •	•				

143 Which is the process of improvement in behaviour by training?

146	The 1	Doing aspect of behaviour falls in the				
	(1)	Affective domain of learning				
	(2)	Conative domain of learning				
	(3)	Psychological domain of learning				
	(4) .	Cognitive domain of learning				
	व्यवहार का 'करना' पक्ष है					
	(1)	सीखने का भावात्मक क्षेत्र				
Δ.	(2)	सीखने का गतिक / क्रियात्मक क्षेत्र				
-	(3)	सीखने का मनोवैज्ञानिक क्षेत्र				
	· (4)	सीखने का ज्ञानात्मक क्षेत्र				
	` '					
147	Indiv	vidual attention is important in the Teaching-Learning process, because				
	(1)	If offers better opportunities to teachers to discipline each learner				
	(2)	Teacher training programmes prescribed it				
	(3)	Children develop at different rates and learn differently				
	(4)	Learners always learn better in groups				
	शिक्ष	शिक्षण अधिगम प्रक्रिया में व्यक्तिगत रूप से ध्यान देना महत्वपूर्ण है, क्योंकि				
	(1)	इससे प्रत्येक शिक्षार्थी के अनुशासित करने के लिए शिक्षकों को बेहतर अवसर				
	(2)	शिक्षक प्रशिक्षण कार्यक्रमी में ऐसा निर्धारित किया गया है				
٠.	(3)	बच्चों की विकास दरें भिन्न होती है और वे भिन्न तरीकों से सीखते है				
	(4)	6 1 3 - 1 2 1 2 - 1 And 3				
•	: '					
148		olescence likes to listen radio, gramophone and enjoy television with dy. These are the Ideas of				
	(1)	Skinner (2) Wood				
	(3)	-				
		गोरावस्था में किशोर–किशोरियाँ अध्ययन के साथ–साथ टी. वी. देखना, रेडियो व गेफोन सुनना पसंद करते है, ये विचार है				
	(1)	स्किनर (2) वुड				
•	. (3)	पियाजे (4) गैसल				

- 149 A Teacher always helps her learner link the knowledge they have derived in one subject area with the knowledge from other subject areas, this helps to promote
 - (1) Learner autonomy
 - (2) Reinforcement
 - (3) Individual differences
 - (4) Correlation and transfer of knowledge

एक शिक्षक अपने शिक्षार्थियों की सदैव इस रूप से मदद करता है कि वे एक विषय क्षेत्र से प्राप्त ज्ञान को दूसरे विषय के क्षेत्रों के ज्ञान के साथ जोड़ सके, इससे वृद्धि होती है, वह है

- (1) शिक्षार्थी स्वायत्तता
- (2) पुनर्बलन
- (3) वैयक्तिक भिन्नता
- (4) ज्ञान का सहसंबंध एवं अंतरण
- 150 In which situation guidance does not help the development of mental health of the learner?
 - (1) When guidance develops an insight to solve the problems of life
 - (2) When guidance creates initiation in the learner
 - (3) When it promots individual's self realization
 - (4) When a learner does not co-operate with the counsellor

किस परिस्थिति में अधिगमकर्ता के मानसिक स्वास्थ्य के विकास में निर्देशन सहायता नहीं करता है ?

- (1) जब निर्देशन जीवन की समस्याओं का समाधान करने में अन्तर्दृष्टि का विकास करता है
- (2) जब निर्देशन अधिगमकर्ता में पहल करने की क्षमता निर्मित करता है
- (3) जब आत्मानुभूति को विकसित करता है
- (4) जब अधिगमकर्ता परामर्शदाता के साथ सहयोग नहीं करता है

SPACE FOR ROUGH WORK / कच्चे काम के लिये जगह

...b.// [D]

63

c ota:

:37L

[Contd...

.