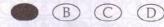
ME1315

ELECTRONICS AND COMMUNICATION ENGINEERING Paper - 2

Series

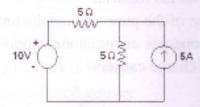
Sl.No.: 517789

Duration: 150 Minutes


Max. Marks: 300

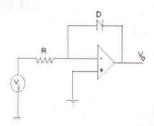
INSTRUCTIONS TO CANDIDATES

- Please check the Test Booklet immediately on opening and ensure that it contains all the 150 multiple choice questions printed on it.
- Separate Optical Mark Reader (OMR) Answer Sheet is supplied to you along 2. with the Question Paper Booklet. The OMR Answer sheet consists of two copies i.e., the Original Copy (Top Sheet) and Duplicate Copy (Bottom Sheet). The OMR sheet contains Registered Number/Hall Ticket Number, Subject/ Subject Code, Booklet Series, Name of the Examination Centre, Signature of the Candidate and Invigilator etc.,
- If there is any defect in the Question Paper Booklet or OMR answer sheet, please ask the invigilator for replacement.
- Since the answer sheets are to be scanned (valued) with Optical Mark Scanner system, the candidates have to USE BALL POINT PEN (BLUE/BLACK) ONLY for filling the relevant blocks in the OMR Sheet including bubbling the answers. Bubbling with Pencil / Ink Pen Gel Pen is not permitted in the examination.
- The Test Booklet is printed in four (4) Series, viz. A or B or C or D. The Series A or B or C or D is printed on the right-hand corner of the cover page of the Test Booklet. Mark your Test Booklet Series in Part C on side 1 of the Answer Sheet by darkening the appropriate circle with Blue/Black Ball point pen.


Example to fill up the Booklet series

If your test Booklet Series is A, please fill as shown below:

- 1) A capacitor C is connected across a coil with resistance R and inductance L. The effective of the circuit at resonance is


- (1) $\frac{1}{RLC}$ (2) $\frac{RC}{L}$ (3) $\frac{L}{RC}$ (4) $\frac{L}{\sqrt{RC}}$
- The voltage across 5 A source in the given circuit is 2)
 - (1) 17.5 volt (2) 25 volt (3) 15 volt
- (4) 20 volt

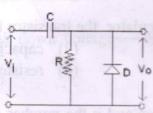
- The current i(t) through a 10Ω resistor in series with an inductance is given by $i(t) = 3 + 4 \sin(100t + 45^{\circ}) + 4\sin(300t + 60^{\circ})$ Amperes. The rms value of the current and the power dissipated in the circuit are
- (1) 40 A, 410W (2) 10A, 350W (3) 5A, 250W (4) 11A, 250W
- An ideal voltage source and current sources are connected in parallel. This circuit has
 - (1) neither Thevenin nor Norton's equivalent
 - (2) both Thevinin and Norton's equivalent
 - (3) a Thevenin equivalent but not Norton's equivalent
 - (4) a Norton's equivalent but not Thevenin equivalent
- A transient current in a network is $i(t) = 2e^{-t} e^{-5t}$, $t \ge 0$. The pole-zero configuration of I(s) is
 - (1) poles : 1,5 zeros : 9
 - (2) poles: -1, -5 zeros: -9
 - (3) poles: 2, -1 zeros: -1, -5
 - (4) poles: 2, -1 zeros: 1, 5
- 6) $F(s) = \frac{(s+1)(s+3)}{s(s+2)}$ represents an
 - (1) RC impedance and an RL admittance
 - (2) RL admittance
 - (3) RC impedance
 - (4) RC admittance

- The transfer function of a system Z(s) = V(s)/I(s) = s/(s+3). The system is at rest for t < 0. What will be the value of v(t) for $t \ge 0$, if i(t) = 3 u(t), where u(t) is a step function
 - $(1) e^{-t}$
- (2) 4 e^{-t}
- (3) 2 e^{-3t}
- Doping materials are called impurities because they
 - (1) change the temperature of the material
 - (2) alter the crystal structure of the pure semiconductor
 - (3) change the chemical properties of semiconductors
 - (4) decrease the number of charge carriers
- In IC technology, dry oxidation as compared to wet oxidation produces 9)
 - (1) superior quality oxide with a lower growth rate
 - (2) superior quality oxide with a higher growth rate
 - (3) inferior quality oxide with a lower growth rate
 - (4) inferior quality oxide with a higher growth rate
- 10) In a transistor $h_{fe} = 50$, $h_{ie} = 830\Omega$, $h_{oe} = 10^{-4}$ mho. Its output resistance when used in CB configuration is about
 - (1) 2 M Ω
- (2) 2.5 M Ω
- (3) 500Ω
- (4) 500 K Ω
- 11) The circuit shown in the figure can be used as a
 - (1) full wave rectifier

- (2) voltage to frequency converter
- (3) logarithmic amplifier
- (4) frequency to voltage converter

- 12) KCL is a consequences of law of conservation of
 - (1) flux
- (2) energy
- (3) potential (4) charge

13)	When a source is delivering maximum p	ower to a load, the efficiency	604/A of the
	circuit de la	(a) and the state of the	I (VI
	(1) is always 50%		
	(2) is always 75%		
	(3) depends on the circuit parameters		
	(4) is always 100%		
14)		quals at whow san resq-own 63	
	(1) short-circuit terminal voltage		
	(2) open-circuit terminal voltage		
	(3) net voltage available in the circuit		
	(4) voltage of the source		
15)) For a series RLC circuit, the power factor	r at the lowest half power frequency	nancu
	10	rate to rodman power neq	uency
		(2) 0.5 leading	
	(3) 1.0	(4) 0.707 leading	
	CONTRACTOR OF THE PROPERTY OF	4) behaves the a metallic or	
16)	A series RLC circuit has a resonance freq Q = 100. If each of R, L and C is doubled of the circuit	uency of 1 kHz and a quality and from its original value, the n	factor lew Q
	(1) 200 (2) 100	(3) 25 (4) 50	
17)	An industrian and a constitution of the state of	he Boers suplished it is appli	
	An inductance and a capacitance are conne is applied across the combination, then t circuit will be	the initial and final currents i	in the
		When the frequency of the in	
	(1) 0, ∞ respectively (
	(3) ∞ , ∞ respectively (4)	3) decreases seguite own	
18)	The Laplace transform of the function i(t)	is $I(s) = \frac{10s+4}{s(s+1)(s^2+4s+5)}$ Its	final
	value will be will be and sough in the high in		
	remove science regions of silicon exide).	(4) 4	


				304/A
19)	The	e network function $F(s) = \frac{(s+2)}{(s+1)(s+1)}$	3) Re	presents an
	(1)	RC admittance and an RL imped	ance	(f) is always 50 r Live (f)
	(2)	RC impedance		
	(3)	RL impedance		(4) depends on the cutant.
	(4)	RC impedance and an RL admitt	ance	
20)	If a	two-port network is reciprocal as v	well a	as symmetrical, which one of the
	follo	owing conditions true		
	(1)	$Z_{12} = Z_{21}$ and $Z_{11} = Z_{22}$		(2)
	(2)	$Z_{11} = Z_{21}$ and $Z_{12} = Z_{22}$		
Dille	(3)	$Y_{11} = Y_{21}$ and $Y_{12} = Y_{22}$		
	(4)	AD + BC = 1 and $A = C$		(the source of the source)
21)	An	intrinsic semiconductor at absolute	zero	temperature
	(1)	has large number of holes		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	(2)	has a large number of electrons		
	(3)	behaves like an insulator		
	(4)	behaves like a metallic conductor		(4) 500 K/3
22)	A di	ode clamper also referred to as a		(6) A sories RLC curviculars a of (6) A sories RLC curviculars and
	(1)	series rectifier	(2)	
	(3)	shunt rectifier	(4)	shunt clamper
23)	The	Ebers-Moll model is applicable to		
	(1)	Junction FET (2) UJT	(3) NMOS (4) BJT
24)	Whe	on the frequency of the input signal	al to	a CMOS gate is increased, the
	(1)	does not change	(2)	increases
	(3)	decreases	(4)	decreases exponentially
25)	Phot	o masking		18) The Laplace transform of the
		controls the depth of diffusion		
	(2)	is used to prevent ambient light sh	nining	g on the silicon slice
	(3)	is used in the process to remove so	electe	ed regions of silicon oxide
	(4)	reduce the size of the circuit eleme	ents	
		8		
		9		

- **26)** The self bias is used in amplifiers to
 - (1) reduce the cost of the circuit
 - (2) reduce the dc base current
- (3) make the operating point almost independent of β
 - (4) limit the input ac signal going to the base terminal
- 27) The h- parameter equivalent circuit of a BJT is valid for
- (1) low frequency, large signal operation
 - (2) low frequency, small signal operation
 - (3) high frequency, small signal operation
 - (4) high frequency, large signal operation
- 28) In a centre-tap full wave rectifier, V_m is the peak voltage between the centretap and one of the secondary. The maximum voltage across the reverse biased diode is (1) $V_{\rm m}$ (2) 2 $V_{\rm m}$ (3) $V_{\rm m}/2$ (4) 3 $V_{\rm m}$

SALA/A

- **29)** The circuit shown in figure is a
 - (1) positive peak clipper (2) positive clamper

- (3) differentiator (4) negative clamper

- 30) The gain of a transistor amplifier falls at high frequency due to the
 - (1) coupling capacitor at the output
 - (2) skin effect
 - (3) internal capacitances of device
 - (4) coupling capacitor at the input
- 31) Darlington pair consists of the following two stages and mollowing two
 - (1) both CE
- (2) CE and CB (3) CE and CC (4) both CC
- 32) The voltage gain of an amplifier is 100. On applying negative feedback with $\beta = 0.03$, its gain will reduce to
 - (1) 50
- (2) 2.5
- (3) 3.0 (4) 25

504/A

33)	The main function of the transformer used in the output of a power amplifier is (1) to step up the voltage (2) to step down the voltage (3) to match the load impedance with dynamic output resistance of the transistor
	(4) to increase voltage gain
34)	The bandwidth of a double tuned transformer coupled amplifier can be adjusted by varying the (1) coupling coefficient (2) value of the inductance
	 (3) value of the emitter biasing resistance (4) value of resistance
35)	Crossover distortion results in (1) class B output stage (2) common emitter output stage (3) class AB output stage (4) class A output stage
36)	In transistor series voltage regulator the transistor behaves like a variable (1) resistor (2) capacitor (3) inductor (4) resistor and capacitor
23)	If b is the number of branches and n the number of nodes in a connected graph, the number of links corresponding to any tree of the graph (1) $b-n-1$ (2) $b-n+1$ (3) $n-b-1$ (4) $n+1-b$
	The number of edges in a complete graph of n vertices is (1) n/(n-1) (2) n-1 (3) n (4) n/2
	Superposition theorem is not applicable to networks containing (1) nonlinear elements (2) do but 30 (5) (1)
	(2) dependent voltage sources (3) dependent current sources (3) a readilgram to a segregation of (\$\mathbb{E}\$) (\$\mathbb{E}\$) transformers (4) transformers

=0	4	14
DU	4	A

40)	In an RLC parallel circuit the impedance at resonance is
10)	
	(3) maximum (4) zero
41)	Any two-port network having a 6dB loss will give
	(1) an output power which is 0.707 of the input power
	(2) an output power which is one quarter of the input power
	(3) an output power which is one half of the input power
	(4) an output voltage which is 0.707 of the input voltage which is 0.707 of the input voltage
	(1) 7,85% (2) 25% (3) 50%
42)	For a reciprocal network, the two port h- parameters are related as follows
	(1) $h_{12} = h_{21}$ (2) $h_{11}h_{22} - h_{21}h_{12} = 1$
	(3) $h_{11}h_{22} - h_{21}h_{12} = -1$ (4) $h_{12} = -h_{21}$
43)	Which of the following is not associated with a PN junction?
n Jan	(1) depletion capacitance
	(2) junction capacitance
	(3) charge storage capacitance
	(4) channel length modulation
44)	Zener diode break down voltage——with temperature
Minor	(1) decreases (2) constant
	(3) increases (4) may increase or decrease
	01216
45)	The output V-I characteristics of an enhancement type MOSFET has
	(1) an ohmic region at low voltage value followed by a saturation region
	at higher voltages
	(2) an ohmic region at large voltage values preceded by a saturation region
	at lower voltages
	(3) only an ohmic region
	(4) only a saturation region
	(4) Name 15157
46)	Typical value of h, is
	(1) $1 \text{K}\Omega$ (2) 1Ω (3) $100 \text{K}\Omega$ (4) 50Ω
	The way and a set polymouth of the propagate against again the trace that
47)	The ripple factor of a bridge rectifier is
	(1) 1.11 (2) 0.121 (3) 1.21 (4) 0.812

48)	The ideal Op-Amp has following chara	acteri	stics		304/A
	(1) $R_1 = \infty, A = \infty, R_0 = 0$	(2)	$R_{i} = 0, A =$	= ∞, F	$R_0 = 0$
	(1) $R_i = \infty, A = \infty, R_0 = 0$ (3) $R_i = \infty, A = \infty, R_0 = \infty$	(4)	$R_{i} = 0, A =$	= ∞, F	$R_0 = \infty$
49)	In a half-wave rectifier, if an a.c supply will be	is 60	Hz, then the	e a.c r	ipple at output
137	(1) 6Hz (2) 30Hz	(3)	60Hz	(4)	120Hz
50)	Maximum theoretical conversion efficient (1) 7.85% (2) 25%				
51)	In a logic equation $A(A + \overline{B}\overline{C} + C) + \overline{B}(\overline{C})$ then				
	(1) $A+B=1$ (2) $\overline{A}+B=1$	(3)	$A + \overline{B} = 1$	(4)	A = 1
52)	The maximum positive and negative no 2's compliment form using n-bit are $(1) + (2^{n-1}-1), -(2^{n-1}-1)$ $(3) + 2^{n-1}, -2^{n-1}$	(2)		- 2 ⁿ -	1
53)	What is the resolution of a nine bit D/A in percentage?	conv	erter which	uses la	adder network
	(1) 1 (2) 2	(3)	4	(4)	10
54)	In a positive edge triggered JK flip-flo (1). If the inputs J=A and K=B then	p, the	e present sta state Q _{n+1} wi	te Q _n	is set to high
	$(1) \overline{B} \qquad (2) \overline{A}$				A
55)	In PLA both AND and OR arrays are (1) Non-programmable (3) 1 and 2	(2) (4)	Programma None		(to (f)
56)	Pick the wrong statement of CMOS (1) Low power dissipation (2) Poor Noise immunity (3) High packing density (4) Wide range of supply voltages				47) Therap

m o	1 4	
	/ /	
- 7	1 -	

57) The signal $e^{-t}u(t)$ is applied as input to an L-section RC lowpass filter with time-constant equal to 1. The energy spectral density at the output of the filter at the 3-db cutoff frequency of the filter is

(1) 1

(2) 0.5

(3) 0.25 (4) 1.5

58) Two LTI systems with impulse responses h₁(t) and h₂(t) are connected in series(cascade), the impulse response of the overall system is

(1) $h_1(t) + h_2(t)$ (2) $\frac{h_1(t) h_2(t)}{h_1(t) + h_2(t)}$

(3) $h_1(t)*h_2(t)$

(4) $h_1(t).h_2(t)$

59) Which of the following system is causal?

(1) $h(n)=n(\frac{1}{2})^n u(n+1)$

(2) $y(n)=x^2(n)-x(n+1)$

(3) y(n)=x(-n)+x(2n-1)

(4) $h(n)=n(\frac{1}{2})^n u(n)$

60) Two parallel connected discrete time systems with impulse responses h₁(n) and h₂(n) can be replaced by a single equivalent discrete time system with impulse response,

(1) $h_1(n) * h_2(n)$ (2) $h_1(n) + h_2(n)$

(3) $h_1(n) - h_2(n)$ (4) $h_1(n) * [h_1(n) + h_2(n)]$

61) For a stable LTI discrete time system, poles should lie and unit circle should be

(1) Outside unit circle, included in ROC

(2) Inside unit circle, outside of ROC

(3) Inside unit circle, included in ROC

(4) Outside unit circle, outside of ROC

62) The discrete time Fourier transform of the signal, $x(n) = 0.5^{(n-1)} u(n-1)$ is,

(1) $\frac{e^{-j\omega}}{1-0.5e^{-j\omega}}$ (2) $e^{-j\omega}(1-0.5e^{-j\omega})$ (3) $\frac{0.5e^{-j\omega}}{1-0.5e^{-j\omega}}$ (4) $\frac{0.5e^{j\omega}}{1-0.5e^{-j\omega}}$

63) The characteristic polynomial of a system $q(s)=2s^5+s^4+4s^3+2s^2+2s+1$. The system is

(1) Stable

(2) Marginally stable

(3) Unstable

(4) Oscillatory

							5	J4/A
64)	The	system mode	descri	bed by this eq	uation	$X = \begin{bmatrix} 0 & 1 \\ 2 & -3 \end{bmatrix}$	$x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u, \ y = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	1] <i>x</i>
	is							
	(1)	Controllable	and ob	servable				
	(2)	Controllable	but no	t observable				
	(3)	Observable l	but not	controllable				
	(4)	Neither cont	rollable	nor observab	le			
65)	The	number of sv	witchin	g functions of	f 3 vari	ables is		
	(1)	8	(2)	64	(3)	128	(4) 256	
66)		K Flip flop if lted flip flop if		out K with the	invert	ed from of w	what we input	J, the
	(1)	SR flip flop			(2)	JK flip-flop	itself	
	(3)	D flip flop			(4)	T flip flop		
67)	Hov	v many and v	vhat are	the machine	cycles	needed for	execution of F	USH
nw i	B?							
	(1)	2, fetch and	memo	ry write				
	(2)	3, fetch and	2 men	nory write				
	(3)	3, fetch, me	mory v	vrite and read				
	(4)	3, fetch and	2 men	nory read				
68)	For is	successive ap	proxin	nation with N	output	bits, number	r of clocks rec	uired
	(1)	N + 2 or N	(2)	2N + 1	(3)	2 ^N	(4) $2^N - 1$	
69)	The	minimum nu	ımber o	of flip-flops re	quired	in a counter	to count 60 p	oulses
	(1)	4	(2)	6	(3)	8	(4) 10	
70)	Wha	at is the addr	essing	mode used in	instruc	ction LXI B	0345 H ?	
,	(1)	Direct	8		(2)	Indirect	16 N - 1 (11)	
	(3)	Indexed			(4)	Immediate		
71)	The	8255 progra	mmabl	e peripheral in	nterfac	e consist of	8-bit p	orts
	(1)			3	(3)		(4) 6	
	,		, ,					

72)	Rea	Hard Control of the C		Hall I Var allele					(18
	(1) Synchronize fast peripherals with microprocessor								
	(2)	Synchronize	slow 1	peripherals with	n mic	roprocessor			
	(3)	Send request	to mic	croprocessor fo	r dire	ect memory a	ccess		
	(4)	Send request	to mi	croprocessor fo	or inte	errupt subrou	tines		
29)		sper of Navil) gate	s required for		CEPODE DEL	BIRRIS	M (4)	
73)		The second secon		tivated, the pro					
	(1)	1000H	(2)	2000H	(3)	3000H	(4)	0000H	
74)	An	'N' bit Johnso	n cou	nter can count		etates			
/4)	(1)			2N		N-1	(4)	2N-1	
	(1)	11	(2)	-11 isi (1-		form of a 't	Ualic	The Z-	
75)	The	2's complime	nt of	the given numl	per 10	011001 is			
,				1011001H			(4)	None.	
	` '								
76)	The	n-stage registe	er resu	ilts in a delay o	f				
	(1)	(n-1) T	(2)	2nT	(3)				
77)				possible comb	inatio	ons and each	of t	hese pos	sible
		binations is ca			(2)	Mintom			
	(3)								
	(3)								
78)	Wh			of (10010) ₂					
,				00100					
79)	The	2's compleme	ent rep	presentation of	the d	ecimal numb	er –4	is	
	(1)	1000	(2)	1100	(3)	1011	(4)	1010	
80)	The			eriodic signal x	6.62	ith period T	vill n	ot conve	rge if
	(1)			t all values of t		(24			
	(2)			one maxima i		period T			
	(3)			ous at all points					
	(4)	x(t) is not a	band	limited signal					

4/15/2 81) When the input to an LTI system is a unit step function, the output is a bounded signal. Which of the following inferences is correct? (1) The system is not necessarily stable (2) The system is not definitely stable (3) The system is definitely unstable comparison of lesuper base (4) (4) None of the above 82) Which of the following signal is an example for deterministic signal? (1) step (2) ramp (3) exponential (4) all of the above 83) The Z- transform of a^{-n} u(- n -1) is, (1) $\frac{-z}{z-1/a}$ (2) $\frac{z}{z-1/a}$ (3) $\frac{z}{z-a}$ (4) $\frac{-z}{z-a}$ 84) The ROC of the signal $x(n) = a^n$ for -5 < n < 5 is, (1) entire z-plane (2) entire z-plane except z=0 and $z=\infty$ (3) entire z-plane except z=0 (4) entire z-plane except $z=\infty$ 85) If a signal is folded about the origin in time, then its (1) magnitude spectrum undergoes change in sign (2) phase spectrum undergoes change in sign (3) magnitude remains unchanged 0100111 la aboo (arg odt 21 and W (8)) (4) both 2 and 3 86) If $s^3+3s^2+4s+A=0$, then all the roots of this equation are in the left half plane provide that (2) -3 < A < 4 (3) 0 < A < 12 (4) 5 < A < 12(1) A > 12

87) The gain margin of the system with open loop transfer function $G(s)H(s)=\frac{2(1+s)}{s^2}$

(1) ∞ (2) 0 $\lim_{n \to \infty} (3) 1 \lim_{n \to \infty} (4) -\infty$ (3)

88) The Ny the (-1,	quist plot of a l j0) point, the g	oop transfer fi ain margin of	unction the sys	G(jω)H(jω) tem is	of a sy	504/ estem enclos	A e:
	ss than zero			Zero			
(3) Gr	eater than zero		(4)	Infinity			
89) Number	of NAND gat	es required fo	or Ex-N	OR implem	entatio	(3) the	
(1) 4	= (1) x notes (2)	6	(3)	5 Heory 12s	(4)	8	
90) To impl	ement n-bit par	rallel adder re	equires _	Fı			
(1) n	(2)	n – 1	(3)	n+1	(4)	none	
91) The mos	st widely used	bipolar techno	ology fo	or digital IC	S action		
(1) DT	L (2)	TTL	(3)	ECL meni	(4)	None	
92) Output o	f JK flip flop t	oggles when					
	, K=0 (2)		(3)	J=1, K=1		=0, K=0	
93) The word	d size of 8085	microprocesso	or is				
(1) 4-bi	t (2)		(3)	20-bit	(4)	8-bit	
94) The octal	equivalent of	the decimal n	umber 3	375 is.			
(1) 560	(2)	567	I DY UNK	565	(4) r	none	
95) Fan-out fo	or the 74 series	is					
(1) 4	(2)	5 mindrate b	(3)	miable is a	(4) 1	0. A(101	
96) Multiplex	er can be name	ed as					
		sampled arveti (t) may be reci					
(2) One	2						
(3) Seria(4) None	l to parallel con	iverter					

=	n	4	/ A
3	U	4/	A

F \#	UC	504/A
97)	The	fundamental period T of a periodic-continuous time signal $x(t)$, is
	(1)	the smallest positive constant satisfying the relation $x(t) = x(t+mT)$ for
		every t and any integer m
	(2)	the positive constant satisfying the relation $x(t) = x(t+mT)$ for every t
		and any integer m
	(3)	any t and any integer m
	(4)	the smallest positive integer satisfying the relation $x(t) = x(t+mT)$ for any t and any m
98)	An	instruction used to set the carry flag in a computer can be classified as
	(1)	Data transfer
	(2)	Arithmetic
	(3)	Program control 10 101 vgolombos uslogid basis vlabins asserted (12
	(4)	Logical Instruction
99)	It is	possible to compute the cross-correlation $R_{xy}(\tau)$ between two signals
	x(t)	and y(t) directly from their convolution provided
	(1)	x(t) has even symmetry
	(2)	x(t) has odd symmetry
	(3)	y(t) has odd symmetry 21 10225500100 Ding 2808 to assa brown add 1820
	(4)	y(t) has even symmetry
		mentado specimin undergoes change minigui et al la companie de la
100)The	transfer function of a phase lead controller is $\frac{1+3Ts}{1+Ts}$, the maximum
	valu	e of phase provided by this controller
	(1)	90° (2) 60° (3) 45° (4) 30°
		95) Fine-out for the 74 series in an income adults and the rate of the first of the
101) A ra	andom variable is uniformly distributed between 3 and 6. Its variance is
		0.75 (2) 0.25 (3) 0.5 (4) 1
102) x(t)= max	=3 $\cos^2 250\pi t$. This signal is sampled at regular intervals of T seconds. The imum value of T for which x(t) may be recovered from the sampled version
		out any distortion, is equal to
	(1)	1 ms (2) 2 ms (3) 4 ms (4) 0.5 ms

100							504/4
103)A m and to	nessage signal +2 V is transn	with nitted	its amplitud by a 4-bit b	de unifor inary PC	mly distrib M system.	the (S	504/A etween -2 V NR) _q is equal
141/5	256	(2)	1024	(3)	512	(4)	768
104)In a	16-ary PSK, ti	he syr	mbol rate is	10 kbps	The bit rat	te is	
	160 kbps						(10/16) kbps
105) For	any 4-ary FSI	K, the	signal set is	s given b	у		1 10
	$s_k(t) = \sqrt{\frac{2E}{T}}$	cos	$\left[\frac{\pi}{4}(n+k)t\right]$;	0 ≤ t ≤	T k=1,	2,3,4	
The	dimension of i	ts sig	nal space is			nesir p	
(1)	1	(2)	2	(3)	3	(4)	4
spec	ne filter metho ifications less it is ensured	string	gent,				
	components			ating 51	gnai nas i	io mg.	n-requency
(2)	a high-freque signal	ncy c	arrier is use	ed initial	ly for gene	rating	the DSB-SC
(3)	only those mo		ing signals	which ha	ive high dc	and lo	ow frequency
(4)	a low-frequer signal	псу са	urrier is use	d initial	y for gene	rating	the DSB-SC
107) The	occurrence of	doub	le spotting i	indicates			
(1)	that the IF is t						
(2)	that the selectivity is poor						
(3)	THE THE PERSON NAMED IN			of the rec	eiver is ina	dequat	e
(4)	that the local o					-	
108) If in mode	a rectangular ve e is 12GHz, th	waveg	uide for whoff frequenc	ich a=2b y for TM	, the cutoff I_{11} mode is	freque	ency for TE ₀₂
(1)	3GHz	(2)	$3\sqrt{5}$ GHz	(3)	12 GHz	(4)	$6\sqrt{5}$ GHz

with (4) 133 pWm (4) 133 pWm

504/A

	electric potenti -2,1,5) and (1,1)				The Party of the P	after the second of the second
		5, -1), respect			u III u	le Heid is
	2.57mJ		+1.01	5.14mJ		
(3)	10.28mJ		(4)	None of th	ese	N. Flat
	olane wave pro v/m, then the					ectric field is
(1)	1.5 A/m	(2) 5.0 A/n	n (3)	10 π A/m	(4)	20 A/m
	ve propagating e wave is	in +Z direction	on, E is giv	ven E _x =2cos	t E,	$=2\cos(t+90^{\circ})$
(1)	Linear polaria	zed				
(2)	right circular	polarized				
	left circular p					
	elliptically po		enemiqu o			
med (1)	the velocity of 1 lium with $\varepsilon_r = 1 \times 10^8 \text{m/s}$ $2.5 \times 10^6 \text{ m/s}$	4.5, $\mu_{\rm r} = 2 \text{ W}$	ould be (2)		s	(S)
	input impedar		rcuited los	sless line of	leng	th less than a
(1)	purely resistiv	re .	(2)	purely indu	active	
(3)	purely capaci	tive	(4)	complex		
a 30 tran	OΩ loss less tra OMHz source of smission line for 5.0m	of internal resistor maximum	tance of 50 power trans	Ω.What sho fer	uld be	e the length of
is 1	electric field m V/m. The avera	age power dens	sity at a dist	ance of 500		
	$26.6~\mu W/m^2$				(4)	$13.3~\mu \dot{W}/m^2$
			20			

ANLOR			504/A	
116)Xi	is a random variable with variants	nce σ_x^2 . Th	be variance of $(X + a)$ where a is	a
	$(\sigma_x + a)^2 \qquad (2) \sigma_x^2$	(3)	$(\sigma_x^2 + a^2)$ (4) $(\sigma_x^2 - a^2)$	
117)Tw fur	vo random processes X and Ya ther one of them has zero me	are such tha	$t R_{XY}(t_1,t_2)=0$ for all t_1 and t_2 and occases are	i
(1)				
(2)				
(3)			an AM mansmitter in	
(4)			inponeitabhitheireisteon sign	
118)Au	to-correlation function $R_X(\tau)$	of a stationa	ary process X(t) is	
(1)	a deterministic function with	maximum	value at τ=0	
(2)	a deterministic function whi	ich is perio	125) For a frequency mod sib	
(3)				
(4)				
119)In	the mid-tread type of quantiz	er, any inp	ut value lying between -0.5 to)
+0.	.5 is mapped into an output va	1 C		
	0.5	manner of the state of the state of	126) A narrow band FM sign	
(3)		(4)	maximum deviation a 1 0	
120) One	e of the following bandpass of	digital mod	ulation schemes is not suitable	
for	transmission over nonlinear b	andpass ch	annels:	
(1)		(2)	ASK Shood MA us ni(\(\tau\)	
(3)	PSK	(4)	QFSK of or beautiful at	
121) Fo	or M-ary PSK systems, the be	st trade-off	between bandwidth efficiency	,
and	transmitted power is given for	or a value o	of M equal to	
(1)			4g fumog sen lliw	
	d frequency rappe with 18 p			
122) Mu	tual information $I(X; Y)$ between	een two dis	crete random variables X and Y	
is g	given by			
(1)	H(X) + H(Y) - H(X,Y)		w Vimonikanakarismuman	
(2)	H(X) - H(Y X)			
(3)				
(1)	H(V) H(V) H(V V)			

123) An amplitude modulated wave is given by $x(t)=10 \cos 1200\pi t + 40 \cos 1400\pi t + 10 \cos 1600\pi t$ The modulating signal frequency and modulation index are (1) 200 Hz, 0.5 (2) 400 Hz, 0.25 (3) 200 Hz, 0.25 400 Hz,0.5 124) When sinusoidally modulated, the r.m.s. value of the current in the antenna of an AM transmitter increases 15% over its unmodulated value. The modulation index is (1) 0.6(2) 0.8(3) 0.5 (4) 0.707 125) For a frequency-modulated signal, the modulation index is doubled. The average power of the modulated signal is (1) quadrupled (2) doubled (3) unaltered (4) none of these 126) A narrow band FM signal is generated using a phase modulator. The maximum deviation at the output of a phase modulator is about (1) $\pm 250 \text{ Hz}$ $(2) \pm 1 \text{ kHz}$ $(3) \pm 1 \text{ MHz}$ $(4) \pm 25 \text{ Hz}$ 127) In an AM broadcast superheterodyne receiver, the local oscillator frequency is arranged to be higher than the incoming signal frequency in order to (1) provide better image rejection (2) make tracking easier (3) produce the correct intermediate frequency, since a lower LO frequency will not permit generation of correct IF (4) enable us to cover the required frequency range with the practically possible ratio of maximum to minimum values of the variable capacitors 128) At the output of the discriminator in a FM receiver, the PSD of the noise (1) increases linearly with frequency (2) decreases as the square of the frequency (3) increases as the square of the frequency

(4) decreases linearly with frequency

129) 'Pre-emphasis' is

- (1) boosting up of the high -frequency components of the message signal after detection in the receiver
- (2) boosting up of the high- frequency components of the message signal at the transmitter before the modulation
- (3) boosting up of the low-frequency components of the message signal after detection in the receiver
- (4) boosting up of the low- frequency components of the message signal at the transmitter before the modulation
- 130) What is the major factor for determining whether a medium is free space, lossless dielectric, lossy dielectric, or good conductor?
 - (1) Attenuation constant
 - (2) Constitutive parameters $(\sigma, \varepsilon, \mu)$
 - (3) Loss tangent
 - (4) Reflection coefficient
- 131) For a lossy transmission line, the characteristic impedance does not depend on
 - (1) The operating frequency of the line
 - (2) The length of the line
 - (3) The load terminating the line
 - (4) both 2 and 3
- 132) At microwave frequencies, we prefer waveguides to transmission lines for transporting EM energy because of all the following except that
 - (1) Losses in transmission lines are prohibitively large
 - (2) Waveguides have larger bandwidths and lower signal attenuation
 - (3) Transmission lines are larger than waveguides
 - (4) Transmission lines support only TEM mode downbased visit

(4) Neither directivity nor bandwidth

				THE P. S.	
122/11				504	
	nen the electric field is at its				of a
	vity is				
(1)					
(2)		alue		paireood (46)	
(3)		lue mentero		o soine il	
(4)	Zero				
134) Gir	van field $A = 2v^2vz$ $+v^3z$	1 xr3xr 2 2 2 2	it can be said	that A is	
	ven field $A=3x^2yza_x + x^3za_y$ Conservative	$+ x^{2}y - 2Za_{z}$	it can be said	and A is	
(2)	Combertative				
(3)					
(4)	Dotational				
STURGE 2	on a minosin a notificative gr				
135) The	e divergence of vector $\overline{A} = [$		- 1 .		
		2-31		asimotta (i)	
(1)	rotational solenoidal	(2)	irrotational both 2 & 3		
(3)	Solelloldal	(4)	00th 2 & 3		
126\E	. d	1 = nerated			
	the vectors $\overline{A} = x\overline{a}_x + y\overline{a}_y$ and			is about	
(1)	xz (2) 0	(3)	I Hz	(4) yz	
137) For	free space E = 50 cos (108)	t + R x) that	the velve of) For a lossy m	
(1)	free space $E = 50 \cos (10^8 + 0.333)$ rad/m	(2)	2/3	р	
(3)		(1)			
(3)	mangolita de l'ober than d	e incomité	and and local		
138) The	e radiation pattern of loop and	tenna is			
(1)	cardiod	(2)	semi-circle		
(3)	circle	(4)	none of thes		
		n at core			
139) A F	Half wave dipole at a frequen	cy of 100 MF	Iz has a lengt	h of	301.
(1)	100 m (2) 3 m	(3)	1.5m	(4) 0.75	
	ltiple number of antennas ar	e arranged in	arrays in ord	der to enhance	
(1)	Both directivity and bandw	ridth			
(2)	Only directivity				
(3)					
(4)	Neither directivity nor band	lwidth			

141) The variance σ^2 of a random variable X is given by

 $(1) \quad \mathbf{E}[X^2]$

(2) $\{E[X]\}^2$

(3) $E[X^2] - \{E[X]\}^2$

(4) $E[X^2] + \{E[X]\}^2$

142) In a linear DM system,

- (1) only granular noise will be present
- (2) only slope overload noise will be present
- (3) both granular noise and slope overload noise can be eliminated
- (4) granular noise will be present but slope overload noise can be avoided by proper design

143)P for a DPSK system is

(1)
$$\exp\left[-\frac{Eb}{\eta}\right]$$
 (2) $\exp\left[-\sqrt{\frac{Eb}{\eta}}\right]$

(2)
$$\exp\left[-\sqrt{\frac{Eb}{\eta}}\right]$$

(3)
$$\frac{1}{2} \exp \left[-\frac{Eb}{\eta} \right]$$
 (4) $\frac{1}{2} \exp \left[\frac{Eb}{\eta} \right]$

$$(4) \ \frac{1}{2} \exp \left[\frac{Eb}{\eta} \right]$$

144) The Foster-Seeley discriminator responds to the input FM signal's

- (1) amplitude variations only
- (2) amplitude as well as frequency variations
- (3) frequency variations only solution made and affine estimation
- (4) variations neither in amplitude nor in frequency

145) A superheterodyne AM broadcast receiver has an IF of 455 kHz. If it is tuned to a frequency of 700 kHz, the image frequency is

(1) 1610 kHz

(2) 1155 kHz

(3) 245 kHz

(4) 210 kHz

146) Which is not an example of convection current?

- (1) A moving charged belt
- (2) Electronic movement in a vacuum tube
- (3) An electron beam in a television tube
- (4) Electric current flowing in a copper wire

147)The	value of electric field	at a distance of 1	m from an i	504/A nfinite line charge	
	sity 1 c/m is				
(1)	$2\pi\epsilon_0$	(2)	1/2πε		
(3)	$\varepsilon_0/2\pi$	(4)	$2\pi/\epsilon_0$		
148)A	line terminated in	its characterist	ic impedan	ce has a SWR	
of					
(1)	infinity	(2)	unity		
(3)	zero	(4)	two		
,	ich one of the followin angular waveguide?	g modes has the	highest cut-o	ff wavelength in a	
(1)	TE ₁₀	(2)	TE_{01}		
(3)		(4)	TM_{11}	m. 10. 1	
150)In e	nd fire array the princip	al direction of rad	iation	÷	
(1)	Is perpendicular to the	array axis			
(2)	Is perpendicular to the array elements		also to the p	lane containing the	
(3)	Coincides with the dir	ection of the array	y axis		
	Is at 45 degrees to the direction of array axis				

Web was a fill manners