MATHEMATICS

CODE :- 12

Time Allowed: Two Hours

Marks: 100

Name:

Roll No. _____

Read instructions given below before opening this booklet:

DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO

- 1. Use only **BLUE Ball Point** Pen.
- 2. In case of any defect Misprint, Missing Question/s Get the booklet changed. No complaint shall be entertained after the examination.
- 3. Before you mark the answer, read the instruction on the OMR Sheet (Answer Sheet) also before attempting the questions and fill the particulars in the ANSWER SHEET carefully and correctly.
- 4. There are FOUR options to each question. Darken only one to which you think is the right answer. There will be no Negative Marking.
- 5. Answer Sheets will be collected after the completion of examination and no candidate shall be allowed to leave the examination hall earlier.
- 6. The candidates are to ensure that the Answer Sheet is handed over to the room invigilator only.
- 7. Rough work, if any, can be done on space provided at the end of the Question Booklet itself. No extra sheet will be provided in any circumstances.
- 8. Write the BOOKLET SERIES in the space provided in the answer sheet, by darkening the corresponding circles.
- 9. Regarding incorrect questions or answers etc. Candidates kindly see NOTE at the last page of the Booklet.

KL-14/Maths

Series-A

		~		
Q.1: If A is a (3x3) non-si	ngular matrix such	that $AA^T = A^T A$ and B	$= A^{-1}A^T$, then BB^T is	
(A) <i>I</i> +B	(B) <i>I</i>	(C) A+B	(D) AB	
Q.2: If A is a (2x2) non-si	ngular matrix, then	the value of adj(adj A)	is	
(A) A	(B) <i>I</i>	$(C) A^2$	(D) –A	
Q.3: Let P and Q be (3x3)	matrices with $P \neq 0$	Q. If $P^3 = Q^3$ and $P^2 Q = Q^2 H$	P, then the determinant of (P^2+Q^2)	is
(A) 1	(B) 0	(C) 2	(D) •2	
Q.4: If A & B are (nxn) m	atrices, then which	of the following stateme	nts is generally invalid	
(A) If A^4 has an in	verse, so has A	(B) If AB has an	n inverse, so has B	
$(\mathbf{C}) \alpha A = \alpha A , \mathbf{f}$	or any positive valu	ue of α (D) $ A^{-1}BA^{2}$	A B	
Q.5: Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$.	If $u_1 \& u_2$ are column	nn matrices such that Au	$_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \& Au_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix},$:
then $(u_1 + u_2)$ is				
(A) $[-1, 1, 0]^{T}$	(B) [-1,1,-1	[] ^T (C) [-1,-1,0]	^T (D) $[1,-1,-1]^{T}$	
Q.6: If A is the singular m	atrix then A(adj A) is		
(A) Identity matri	x (B) null ma	trix (C) scalar mat	rix (D) symmetric matr	ix
Q.7: If A is skew symmetr	ic matrix of order ((n x n), then the trace of A	A is	
(A) n	(B) –n	(C) 0	(D) n^2	
Q.8: If $A = \begin{bmatrix} 2x & 0 \\ x & x \end{bmatrix} \& A^{-1}$	$=\begin{bmatrix} 1 & 0\\ -1 & 2 \end{bmatrix}$, then z	¢ is		
(A) 1	(B) 2	(C) ¹ / ₂	(D) -2	
Q.9: If $\begin{vmatrix} \sin\alpha & \cos\beta \\ \cos\alpha & \sin\beta \end{vmatrix} = \frac{1}{2}$, where $\alpha \& \beta$ are	acute angels, then the val	ue of $(\alpha + \beta)$ is	
(A) $2\pi/3$	(B) $\pi/3$	(C) $\pi/6$	(D) $-\pi/6$	
Q.10: If A is a non-singula	r matrix of order 3	such that $ adj A = 225$	5, then $ A' $ is	
(A) 225	(B) 25	(C) 15	(D) 20	
Q.11: The largest value of	a third order determ	ninant, whose elements a	re 0 or 1 is	
(A) 1	(B) 0	(C) 2	(D) 3	
Q.12: If P(1,2), Q(4,6), R(5,7) and S(a ,b) are	the vertices of a parallel	ogram PQRS, then (a, b) is	
(A) (2, 4)	(B) (3, 4)	(C) (2, 3)	(D) (3, 5)	
013. The distance between		$a_1 = 2a_1 + 4$ and $6a_2 = 2$	3y + 5 is	
Q.1.5. The distance betwee	en the parallel lines	y = 2x + 4 and $6x = 3$		
(A) $\frac{17}{\sqrt{3}}$	en the parallel lines (B) 1	y = 2x + 4 and $6x = 3(C) 3$	$(D)\frac{17\sqrt{5}}{15}$	
(A) $\frac{17}{\sqrt{3}}$ Q.14: If the line $y = mx$	en the parallel lines (B) 1 $+\frac{4\sqrt{3}}{m}$, ($m \neq 0$) is a	(C) 3	(D) $\frac{17\sqrt{5}}{15}$ parabola $y^2 = 16\sqrt{3} x$ and the	
(A) $\frac{17}{\sqrt{3}}$ Q.14: If the line $y = mx$ - ellipse $2x^2 + y^2 =$	en the parallel lines (B) 1 + $\frac{4\sqrt{3}}{m}$, ($m \neq 0$) is a = 4, then the value of	(C) 3 (C) m^2 is	(D) $\frac{17\sqrt{5}}{15}$ parabola $y^2 = 16\sqrt{3} x$ and the	
(A) $\frac{17}{\sqrt{3}}$ Q.14: If the line $y = mx$ - ellipse $2x^2 + y^2 =$ (A) 4	(B) 1 (B) $\frac{4\sqrt{3}}{m}$, $(m \neq 0)$ is a = 4, then the value of (B) 16	(C) 3 (C) 3 a common tangent to the p of m^2 is (C) 2	(D) $\frac{17\sqrt{5}}{15}$ parabola $y^2 = 16\sqrt{3} x$ and the (D) -2	

Q.15: An equation of a plane parallel to the plane x - 2y + 2z = 5 and at a unit distance from origin is

(A) x - 2y + 2z = 3	(B)x - 2y + 2z = -1
(C) x - 2y + 2z = 1	(D)x - 2y + 2z = -5

Q.16: The length of the diameter of the circle which touches the x axis at the point (1,0) and passes

through the point (2,3) is

Q.17: An ellipse is drawn by taking a diameter of the circle $(x - 1)^2 + y^2 = 1$, as its semi minor axis and a diameter of the circle $x^2 + (y - 2)^2 = 4$, as semi major axis. If the centre of the ellipse is the origin and its axis are the coordinate axis, then the equation of the ellipse is

(A)
$$4x^2 + y^2 = 4$$

(C) $4x^2 + y^2 = 8$
(D) $x^2 + 4y^2 = 8$
(D) $x^2 + 4y^2 = 16$

Q.18: The equation of the tangent to the curve $y = x + \frac{4}{x^2}$, that is parallel to x axis is

(A)
$$y=1$$
 (B) $y=2$ (C) $y=3$ (D) $y=0$

Q.19: If two tangents are drawnfrom a point P to the parabola $y^2=4x$ are at right angles, then the locus of P is

(A)
$$2x+1=0$$
 (B) $x=-1$ (C) $2x-1=0$ (D) $x=1$

Q.20: If the vectors $\bar{a} = i - j + 2k$, $\bar{b} = 2i + 4j + k$, $\bar{c} = \lambda i + j + \mu k$ are mutually orthogonal,

then (λ, μ) is

(A) (2,-3) (B) (-2,3) (C) (3,-2) (D) (-3,2)

Q.21: The line L is given by $\frac{x}{5} + \frac{y}{b} = 1$, passes through the point (13,32). The K is parallel to L and

has the equation $\frac{x}{c} + \frac{y}{3} = 1$, then the distance between L and K is

(A) $\sqrt{17}$ (B) $\sqrt{17}/12$ (C)23/ $\sqrt{17}$ (D) $\sqrt{17}/\sqrt{15}$

Q.22: The circle $x^2 + y^2 = 4x + 8y + 5$, intersect the line 3x - 4y = m at two distinct points if (A) -35 < m < 15 (B) 15 < m < 65 (C) 35 < m < 85 (D) -85 < m < -35Q.23: Let \hat{a} and \hat{b} are two unit vectors. If the vectors $\hat{c} = \hat{a} + 2\hat{b}$ and $\hat{d} = 5\hat{a} - 4\hat{b}$ are perpendicular to

each other, then the angles between \hat{a} and \hat{b} is

(A) $\pi/6$ (B) $\pi/2$ (C) $\pi/3$ (D) $\pi/4$ Q.24: Let the line $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$ lies in the plane $x + 3y - \alpha z + \beta = 0$, then (α, β) is (A) (6,-17) (B) (-6,7) (C) (5,-15) (D) (5,-15)

KL14/Maths

Series- A

Q.25: If $\bar{a}, \bar{b}, \bar{c}$ are three mutually perpendicular vectors each of magnitude unity, then $|\bar{a} + \bar{b} + \bar{c}|$ is equal to

(A) 3 (B) 1 (C)
$$\sqrt{3}$$
 (D) 2

0.26: If θ is the angle between \overline{a} and \overline{b} such that $\overline{a} \cdot \overline{b} > 0$, then `

$$(A)0 \le \theta \le \pi \quad (B)\pi/2 \le \theta \le \pi \qquad (C)0 \le \theta \le \pi/2 \qquad (D)0 \le \theta \le 2\pi$$

0.27: The point of intersection of the curves $r^2 = 4 \cos\theta$ and $r = 1 - \cos\theta$ is

(A)
$$(2\sqrt{2} - 2, 80^{\circ})$$
 (B) $(2, 60^{\circ})$ (C) $(3, 70^{\circ})$ (D) $(-2\sqrt{2}, 80^{\circ})$

Q.28: If $f: R \to R$ is given by f(x) = 3x - 5, then $f^{-1}(x)$ is

(A)
$$\frac{1}{3x-5}$$
 (B) $\frac{x+5}{3}$

(D) Does not exist because f(x) is not on to (C) Does not exist because f(x) is not one-one

Q.29: If
$$f(x) = sin^2 x + sin^2 \left(x + \frac{\pi}{3}\right) + cosx. \cos\left(x + \frac{\pi}{3}\right) and g\left(\frac{5}{4}\right) = 1$$
, then $gof(x)$ is
(A) 1 (B) 0 (C) $\sin x$ (D) $\cos x$

Q.30: If the non-zero numbers x, y, z are in A.P. and $tan^{-1}(x)$, $tan^{-1}(y)$, $tan^{-1}(z)$ are also in A.P., then

(A)
$$x = y = z$$
 (B) $xy = yz$ (C) $x^2 = yz$ (D) $z^2 = xy$

Q.31: If $a^x = b^y = c^z$ and a, b, c are in G.P., then x, y, z are in

(C) HP (A) AP (B) GP (D) x=y=z

Q.32: The HM of two numbers is 4. If the arithmetic mean A and geometric mean G satisfy the

relation $2A+G^2=27$, then the numbers are

(A)
$$6, 3$$
 (B) $5, 4$ (C) $5, -5/2$ (D) $-3, 1$

Q.33: If $\lim_{n\to\infty} \left(\frac{x^2}{x+1} - ax - b\right) = 0$, then the value of (a, b) is equal to

(A)
$$(1,-1)$$
 (B) $(2,-1)$ (C) $(-1,2)$ (D) $(2,2)$

Q.34: The value of $\lim_{x\to 0} \{\tan\left(\frac{\pi}{4} + x\right)\}^{1/x}$ is

(A) 1 (B) -1 (C)
$$e^2$$
 (D) e

Q.35: If $f(x) = a|sinx| + be^{|x|} + c|x|^3$ and if f(x) is differentiable at x=0, then

(A)
$$a = b = c = 0$$
 (B) $a=b=0, c \in R$ (C) $b=c=0, a \in R$ (D) $a=c=0, b \in R$

Q.36: Let $f(x) = \begin{cases} \frac{1}{|x|}, & |x| \ge 1\\ ax^2 + b, |x| < 1 \end{cases}$; if f(x) is continuous and differentiable at any point, then

(A)
$$a=1/2, b=-3/2$$
 (B) $a=-1/2, b=3/2$ (C) $a=1, b=-1$ (D) $a=-1, b=1$

Q.37: Let f(x) be a twice differentiable function such that f''(x) = -f(x) and f'(x) = g(x),

$$h(x) = \{f(x)\}^2 + \{g(x)\}^2, \text{ If h } (5) = 11, \text{ then h } (10) \text{ is equal to}$$
(A) 22 (B) 11 (C) 0 (D) -22

KL14/Maths

Series- A

Q.38: If $f(x + y) = f(x)$. $f(x + y) = f(x)$.	(y), for all $x, y \in R$,	& f(5) = 2, f'(0) = 3	, then $f'(5)$ is	
(A) 6	(B) 3	(C) 5	(D) 7	
0.39: If $y = 4x - 5$ is a tangent to the curve $y^2 = px^3 + q$ at (2, 3), then (p, q) is equal to				
(A) (2,-7)	(B) (-2, 7)	(C) (-2,-7)	(D) (2, 7)	
Q.40: The length of the nor	rmal at t on the curve a	x = a(t + sint), y = a	(1 – <i>cost</i>) is	
(A) $a \sin(t)$	(B) $2asin^3\left(\frac{t}{2}\right)$ se	c(t) (C) $2 \operatorname{asin}\left(\frac{t}{2}\right) t$	$ an\left(\frac{t}{2}\right) (D)a\cos(t) $	
Q.41: If $f(x) = a \ln x + $	$bx^2 + x$ has its extrem	num values at x=-1, x=	2, then (a, b) is equal to	
(A) (2,-1)	(B) (2,-1/2)	(C) (-2, 1/2)	(D)(1,1)	
Q.42: Let $f(x) = x - 1 ^{-1}$	x - 2 , then the der	ivative of $f(x)$ at $x=1/2$	2 is	
(A) -2	(B) -1/2	(C) ¹ / ₂	(D) 2	
Q.43: If 2a+3b+6c=0, then	at least one root of th	e equation $ax^2 + bx + bx$	c = 0, lies in the interval	
(A) (0, 1)	(B) (1, 2)	(C) (2, 3)	(D)(3,4)	
Q.44: If $\int \frac{2x^3+3}{(x^2-1)(x^2+4)} dx =$	$= a \ln \frac{x+1}{x-1} + b tan^{-1}$	$\left(\frac{x}{2}\right) + C$, then (a, b)		
(A) (-1/2, ¹ / ₂)	(B)(1/2, ¹ / ₂)	(C) -1, 1)	(D)(1, -1)	
Q.45: The integral $\int [1 + 2t]$	$(x - 1/x] e^{x + 1/x} dx$ is	equal to		
(A) $(x + 1)e^{(x+1)}$	$(x)+C$ (B) $xe^{(x+1/x)}$ +	C (C) $(x-1)e^{(x+1)}$	$+1/x) +C (D)e^{(x+1/x)}+C$	
Q.46: The value of the int	egral $\int_0^{\pi} \sqrt{(1+4\sin \theta)}$	$\frac{x^2}{2} - 4 \sin x/2 dx$	S	
$(A)\pi - 4$	$(B)\frac{2\pi}{3} - 4 - 4$	$\sqrt{3}$ (C)-4 + 4 $\sqrt{3}$	(D) $-\frac{\pi}{3}-4+4\sqrt{3}$	
Q.47: The value of the int	egral $\int_{-1}^{1} \sqrt{(1+x)/(2x)}$	$\overline{(-x)}dx$ is		
(A) <i>π</i>	(B) - π	$(C)\frac{\pi}{2}$	(D) Does not exist	
Q.48: The line segment a	$x = sin^2(t), y = cos^2$	$(t); \ 0 \le t \le \pi/2 \ , \text{ is re}$	evolved about the y axis, Then the	
surface area of th	e solid generated is			
(A) $\pi\sqrt{2}$	(B) $2\sqrt{\pi}$	(C) $\sqrt{2\pi}$	(D) 2π	
Q.49: The curvature of th	the curve $r = sin 2\theta a$	$t \theta = \pi/4$ is		
(A) 5	(B) -5	(C) 5/2	(D) 2/5	
Q.50: The area bounded between the parabolas $x^2 = \frac{y}{4}$ and $x^2 = 9y$ and the straight line y=2 is				
$(A)\frac{10\sqrt{2}}{3}$	$(B)\frac{20\sqrt{2}}{3}$	(C)(10√2	$(D)(20\sqrt{2})$	
Q.51: An asymptote to the curve $x^3 + y^3 - 3xy = 0$ is $x + y + a = 0$, then the value of a is				
(A) -1	(B) 1	(C) ½	(D) 2	
Q.52: The order and degree of differential equation $\left[\frac{d^2y}{dx^2} + y\right]^{3/2} = \left[\frac{dy}{dx}\right]^{2/3} + yx$ is				
(A) 2, 3	(B) 2, 9	(C) 2, $\frac{3}{4}$	(D) not defined	
KL14/Maths		Series- A	4	

https://www.freshersnow.com/previous-year-question-papers/

Q.53: The general solution of the first order equation $x^2y' - 2xy = 3$ is					
(A) $3/2 + \frac{c}{x^2}$	(B) $-3/2 + \frac{c}{x^2}$	(C) cx^2	-1/x	(D) $cx^2 + 1/x$	
Q.54: The particular integ	gral of $y'' + y = \tan x$	n (<i>x</i>) is			
$(A) - \cos(x) \ln(s)$	ecx + tanx)	(B) cos ($(x) \ln(secx \cdot$	+ tanx)	
$(C) - \sin(x) \ln(se$	cx + tanx)	(D) sin (x) ln(secx -	+ tanx)	
Q.55: The singular solution	on of the differential	l equation $y = xy'$	$+y'^2$ is		
$(A)x^2 + 4y = 0$	$(B)x^2 - 4y = 0$	0 (C) $-x^2$ -	-4y = 0	$(D)-x^2+4xy=0$	
Q.56: The curve in which	h the slope of the ta	ngent at any point	equal to the	ratio of abscissa to the	
ordinate of the point	nt is an				
(A) Ellipse	(B) Parabola	(C) Rectangular	r hyperbola	(D) Circle	
Q.57: If $f'(x) = f(x) \& f(x) = f(x) & f(x) = f(x) \& f(x) = f(x) & f(x) & f(x) = f(x) & f($	f(1) = 2, then $f(3)$	is equal to			
(A) e^2	(B) $2e^{2}$	(C)3 <i>e</i> ²	(D) 3e ³	
Q. 58: The value of i^{14} +	$i^{20} + i^{333} + i^{403}$	where $i = \sqrt{-1}$)	is		
(A) 1	(B) -1	(C) 0	(D) 2		
Q. 59: The number of real	solutions of the equ	ation $ x ^2 + 2 x + 2$	+2 = 0 are		
(A) 4	(B) 3	(C) 2	(D) 0		
Q. 60: If the ratio of the ro	ots of the equation a	$ax^2 + bx + c = 0 i$	$s r$ then $\frac{(r+r)}{r}$	$\frac{1}{2}$ is equal to	
$(A)\frac{a^2}{bc}$	$(B)\frac{b^2}{ca}$	$(C)\frac{c^2}{ab}$	(D)	$\frac{1}{abc}$	
Q. 61: If Z is a complex nut	mber, then the great	est and lowest value	e of $ Z + 1 $,	if $ Z+1 \leq 3$ are	
(A) 5, 0	(B) 8, 0	(C) 6, 0	(D) 9, 0		
Q. 62: The smallest positive integral value of n for which $\left(\frac{1+i}{1-i}\right)^n = 1$ is					
(A)8	(B) 12	(C) 16	(D) 4		
Q.63: If 1, ω , ω^2 ,,,,, ω^{n-1} are the n, n th roots of unity, then the value of					
$(1-\omega)(1-\omega^2)$	$\dots \dots \dots (1-\omega^{n-1})$	is			
(A) 0	(B) 1	(C) <i>n</i>	$(D)n^2$		
Q. 64: The complex number	s Sin x + ; Cos2x ar	nd Cos x - ; Sin2x a	are conjugate	e to each other for	
(A) $x = (n+1/2)$	π (B) x = $\pi/2$	2 (C) $x = 0$		(D) no value of x	
Q. 65: Let $f(x) = \sqrt{2}x^2 + 3x - \sqrt{3}$ and $g(x) = x - \sqrt{2}$ are two polynomials in x with real					
coefficients, when $f(x)$ is divided by $g(x)$ the remainder is $5\sqrt{2} - \sqrt{3}$. The quotient is given by					
(A) $\sqrt{2}x - 5$	(B) $\sqrt{2}$	x + 5 (C) v	$\sqrt{2}x - 3$	(D) $\sqrt{2}x + 3$	
Q. 66: Let $(a^*(B)^2 = a^{2*}b^2)$ for 'a' and 'b' are in a group G, then a^*b equals					
(A) b*a	(B) e	(C) a*e		(D) b*c	

KL14/Maths

Series- A

Q. 67: The sum of 23 and 3	l modulo 45 is				
(A) 5	(B) 6	(C) 7	(D) 9		
Q. 68: If 'a' is a generator of a finite cyclic group G of order n, then the other generators of G are the					
elements of the form a ^r , where r is a					
(A) Prime nun	nber (B) Comp	osite number (C) Relati	vely prime to n (D) Zero		
Q. 69: What is the order of t	the cyclic (1, 4, 5, 7	')			
(A) 4	(B) 1	(C) 3	(D) 2		
Q. 70: How many different	signals can be give	en with 5 different flags by	hosting any number of them at		
a time					
(A) 325	(B) 626	(C) 253	(D) 352		
Q. 71: What is the chance of	f getting multiple o	f 2 on one and multiple of	3 on the other in a single throw		
of dice					
(A) 1/3	(B) 7/36	(C) 11/36	(D) 13/36		
Q. 72: A person draws two	cards with replacer	nent from a pack of 52 car	ds. What is the probability that		
he gets both the cards	of same suit.				
(A) 1/4	(B) 3/13	(C) 1/16	(D) 5/16		
Q. 73: The value of $P(x=2)$	in a binomial distril	bution when $p=1/6$ and $n=$	= 5 is		
$(A)\frac{3125}{7776}$	$(B)\frac{250}{7776}$	$(C)\frac{125}{777}$	$\frac{0}{6}$ (D) $\frac{23}{7776}$		
Q.74: A purse contains 4 c	copper coins and 3 s	silver coins; the second pu	rse contains 6 copper coins		
and 2 silver coins. A c	oin is taken out of a	any purse, the probability t	that it is a copper coin is		
(A) 4/7	(B) 3/4	(C) 3/7	(D) 37/56		
Q.75: If the probability of	a defective bolt is -	$\frac{1}{10}$, then the moment of c	oefficient of skewness is		
(A) 0.0178	(B) 0.178	(C) 1.78	(D) 0.00178		
Q.76: A car hire firm has 2 cars, which hires out day by day. The number of demands for a car on each					
Day is distributed as a poisson distribution with mean 1.5. The value of the proportion of days on					
which neither car is	used.				
(A) 0.2231	(B) 0.2131	(C) 0.2321	(D) 0.223		
Q.77: Area of the normal curve between mean ordinate and ordinates at 3 sigma distances from the					
mean percentage of	the total area is				
(A) 48.865	(B) 49.865	(C) 47.865	(D) 46.865		
Q.78: The numbers 3.2, 5	.8, 7.9, and 4.5 have	e the frequencies x , ($x+2$),	(x-3) and $(x+6)$ respectively. If		
the arithmetic mean	is 4.876 , then the v	olume of x is			
(A) 4	(B) 3	(C) 0	(D) 5		

KL14/Maths

Series- A

Q.79: If the mean and me	edian of moderately a	symmetrical series are 2	6.8 and 27.9 respectively	
would be its most pr	obable mode		old and 27.9 respectively what	
(A) 31.1	(B) 30.1	(C) 32.1	(D) 33 1	
Q.80: If mean 30, S.D = 8	, Karl Pearson's coef	fficient of skewness = $+$ (.40 the value of Mode is	
(A) 26.8	(B) 24.8	(C) 22.8	(D) 28.8	
Q.81: In a frequency distr	ribution the coefficien	nts of skewness based on	quartiles is 0.6. If the sum of	
the upper and lower q	uartiles is 100 and m	edian is 38, then the valu	le of upper quartile is	
(A) 50	(B) 70	(C) 60	(D) 80	
Q.82: Given $\mu_1 = 0, \mu_2 =$ is	$40, \mu_3 = -100, \mu_4$	= 200, then the value of	the skewness in the distribution	
(A) 3/64	(B) 1/64	(C) 5/64	(D) 7/64	
Q.83: If the value of coeffic	cient of correlation be	etween two series is $+0.9$	and its probable errors is	
0.0128, what would be	the value of n		and its probable enois is	
(A) 100	(B) 10	(C) 105	(D) 95	
Q.84: The coefficient of cor	relation between the	debenture prices and sha	re prices of a company was	
+ 0.8. If the sum of the s	quares of the differer	nces in ranks was 33, ther	the value of n is	
(A) 10	(B) 11	(C) 9	(D) 8	
Q.85: Given that the regressi	on equations of 'Y' o	on 'X' and 'X' on 'Y' are	respectively Y=X and	
4X = 3+Y, and that the	second moment of x	about the origin is 2. The	en the S.D of Y is	
(A) 0	(B) 1	(C) 2	(D) -2	
Q.86: The angle between two	forces each equal to	'P' when their resultant is	s also equal to P is	
(A) 60°	(B) 180 [°]	(C) 120 ⁰	(D) 90°	
Q.87: The components of a force of magnitude 10 N in the direction making angles of 30° and 60°				
on its sides are				
$(A) 5\sqrt{3} N,$	(B) 5 <i>N</i> ,	(C) 5√2 N, 5N	(D) 5√5 <i>N</i> .5 <i>N</i>	
Q.88: Three coplanar forces ac second is 60° and that be	ting on a particle are etween the second an	in equilibrium. The angl d the third is 150°, then th	e between the first and the he ratio of the magnitudes of	
forces is				
(A) 1: 2 : $\sqrt{3}$	(B)1:3 : √ 3	(C) 1: 1 : v	/3 (D) 2: 1 : ₁ /3	
Q.89: The resultant of two unlik	e parallel forces of n	nagnitude 10N and 18N a	icts along a line at a	
distance of 12 cm. from the	ne line of action of the	e smaller forces, then the	distance between the	
lines of actions of the two	forces is.			
(A) $\frac{16}{3}$ cm	(B) $\frac{17}{3}$ cm	$(C)\frac{14}{3}$ cm	$(D)\frac{13}{3}$ cm	

- - -

KL14/Maths

Series- A

7

ж Ş

Q.90: The moment of a force of m	agnitude 25N acting alo	ong the positive direction of	x-axis about the	
point (-1,3) is				
(A) 75 Units	(B) 65 Units	(C) 55 Units	(D) 45 Units	
Q.91: A couple of moment -60 unit	its act in the plane of the	e paper. The arm of the coupl	e if each force	
is of magnitude 10 units is				
(A) 6 Units	(B) 5 Units	(C) 4 Units	(D) 3 Units	
Q.92: The average speed of a bicy	cle over a journey of 50	5 Km, if it travels the first 10	Km. at 20 km/hr,	
second 12 km in 1 hr and th	ird 24 km at 8 km/hr. is			
(A) 09 km/hr	(B) 10 km/hr	(C) 08 km/hr	(D) 06 km/hr	
Q.93: A particle starts with a velo	city of 30m/s and moves	s in a straight live with const	ant acceleration. If	
its velocity at the end of 6 se	conds be 18 m/s, then the	ne distance traveled by the pa	article before	
it comes to rest is				
(A) 224m	(B) 225m	(C) 220m	(D) 215m	
Q.94: A ball is projected vertically	upward with a velocity	of 112 m/s. How high will i	t rise	
(A) 640m	(B) 630m	(C) 635m	(D) 639m	
Q.95: A man walking at the rate of	of 6 km/h towards east, 1	rain appears to fall vertically	downward. Actual	
direction of the rain if its act	tual velocity is 12 km/h	is		
(A) 50 ⁰	(B) 60 [°]	(C) 45°	(D) 55°	
Q.96: The path of projectile in vac	cuum is a			
(A) Circle	(B) Straight line	(C) Parabola	(D) Ellipse	
Q.97: A particle is projected with	a velocity of 24m/s. at a	an angle of elevation of 60°, 1	then its time of	
flight is		_		
(A) $(2.4)\sqrt{3}$ Seconds	(A) $(2.4)\sqrt{3}$ Seconds (B) $(2.3)\sqrt{3}$ Seconds			
(C) $(2.2)\sqrt{3}$ Seconds (D) $(2.1)\sqrt{3}$ Seconds				
Q.98: A particle is projected up a	smooth inclined plane of	of inclination 60° along the li	ne of greatest	
slope. If it comes to instan	ntaneous nest after 2 sec	onds, then the velocity of pro-	bjection is $(g=9.8m/s^2)$	
(A) 9.8 m/se	(B) 10 m/se	(C) 16.97 m/se	(D) 19.6 m/se	
Q.99: Like parallel forces act at the	he vertices A, B, C of a	triangle and are proportional	to the lengths	
BC, CA and AB respective	ely. The centre of the for	rces is at the		
(A) Centroid		(B) Circum Centre		
(C) In-Centre		(D) None of these		
Q.100: A horizontal rod AB is sus	spended at its ends by tw	vo vertical strings. The rod is	of length 0.6	
meter and weight 3 units.	Its centre of gravity is a	t a distance 0.4 meter from f	orce A, then the	
tension of the string at A	in the same unit, is			
(A) 0.2	(B) 1.4	(C) 0.8	(D) 1.0	
KL14/Maths	Se	eries- A		

KL14/Maths

r

https://www.freshersnow.com/previous-year-question-papers/